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A C Refresher, Part 1: The

Basics

To fully understand the day-to-day details of programming with the Unix APIs, a good knowledge
of the C programming language is vital. Most of the popular modern languages like Java, Perl,
and Ruby have a strong C flavor. If you know any of these languages it should be easy to pick
up the details of C. Well, except for pointers, which many many programmers have trouble with.
Pointers, along with structures and arrays, will be described in detail in the next chapter.

One of the things that trips up new C programmers is expecting the language to do more than
it actually does. At its foundation, C just moves bytes around with little higher-level meaning
projected upon those bytes, and with no hidden behaviors. For instance, most languages have a
String type and programmers (rightfully) expect the equality operator to compare the strings and
indicate whether they contain the same characters in the same order.

C has no string type, and the equality operator just compares the starting address of two strings
(which is an identity rather than a value check). For C to support the “expected” kind of string
compare the language would have to supply a mechanism to do an implicit loop over the
characters of the string. This hidden, potentially expensive behavior goes against the performance-
oriented closer-to-the-metal spirit of C. In general, when faced with possible behaviors in a given
situation (“does string compare result in an identity or value comparison”), think of the simplest
possible behavior. That is most likely what C does.

The C Compiler Pipeline
Here is a simple program:

Example 1.1. first.c

// first.c -- a simple first C program

/* compile with:
cc -g -o first first.c
*/

#include <stdio.h>      // for printf()
#include <math.h>       // for cos()

int main (int argc, char *argv[])
{
    printf ("the cosine of 1 is %g\n", cos(1.0));
    printf ("thank you, and have a nice day\n");
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    return (0);

} // main

Compile it like this:

$ cc -g -o first first.c -lm

And run it:

$ ./first
the cosine of 1 is 0.540302
thank you, and have a nice day

In C, the main() function has special meaning. It is where your program starts executing once the
operating system has finished loading the program into memory.

If you're wanting to use a fancy IDE like Xcode, you'll want to use a project template like
“Standard Tool” and put the code in the source file provided by the template.

The compiling and building of a C program is a multi-stage process, as shown in Figure 1.1. The
figure shows the compiling of a single file, along with linking that file with other files to create a
finished application.

Figure 1.1  The C Pipeline

The source file (first.c in this case) gets fed into the C preprocessor which does some textual
manipulations like header file inclusion and macro expansion, and it also strips out comments. (A
header file is where you declare the public interface for a unit of functionality. We'll talk about
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header files in more detail later). The end result gets fed into the C compiler which translates the
program text into binary machine code. The compiler will generate an “object file” containing the
machine code. If you don't instruct the compiler otherwise, it will just create an executable without
generating an intermediate object file (which is what we did for Example 1.1.

After the compiler has done its work, the linker takes over. The linker takes the object file from
the compiler, and includes any other object files or libraries (pre-packaged code supplied by your
OS or another vendor). The linker crawls through your code and the library code to make sure
all of the features used by the program are available. Once the linking process is successful, the
completed executable is created and is available for use.

Errors can happen at any stage along the way. The preprocessor might not be able to find
a header file. You may have a syntax error in your C code. Your code might reference a
function that isn't found in any of the libraries you tell the linker to use.

All of that activity is wrapped up in the single cc command. Here is the compilation command
used in Example 1.1.

cc The program name of the compiler. This will typically pick up the vendor's
compiler. Mac OS X uses GCC, the GNU Compiler Collection. You can invoke the
compiler as cc or gcc, depending on your mood.

-g Generate debugging symbols (handy if problems develop).

-o first -o tells the compiler to use the name first for the name of the generated program.
Otherwise the compiler uses the non-obvious name “a.out”.

first.c The name of the source file.

-lm Link in the math library for the cos() function. This isn't needed in Mac OS X, but
is necessary on most other platforms.

The Preprocessor
The C Preprocessor is a textual processor that manipulates your source code before it gets fed
to the compiler. Some languages have macro facilities (such as Lisp, although their macros are
different from C macros), but C is unique (as far as I know) because its preprocessor is a distinct
program rather than being built into the compiler. This has the nice side-effect that you can use it
for your own uses outside of C.

The preprocessor is pretty dumb It just performs blind substitutions with no idea of the semantics
of the C language. Thus it is possible to introduce subtle (and not so subtle) errors through misuse
of the preprocessor.

The preprocessor brings three main features to the table: including other files, macro expansion,
and conditional compilation.

Including other files
Commands to the preprocessor start with a “#” in the left-most column. The “#” character is not a
comment character like in most scripting languages. Take a look at the first two lines of first.c:
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#include <stdio.h>      // for printf()
#include <math.h>       // for cos()

#include looks for a file on disk and then pastesthe contents of the file where the #include
directive is. When the file name is surrounded by angled brackets like these, the preprocessor
looks in specific directories hard-coded into the compiler such as the directory /usr/include. So,
these two lines copy the contents of /usr/include/stdio.h and /usr/include/math.h into our
source file. These are just simple text files, so you are welcome to browse them and see the kind of
stuff that is getting included.

The // for printf() and // for cos() lines are just comments added to show why a
particular file has been #included. You don't have to include these. I like to notate header
files like this so I know why I'm #including a header file, in case I don't need it anymore.
It takes a non-zero amount of time to include a file, so it's best to not include it if it's not
necessary.

If you want to include header files you've written yourself, use double quotes instead of angle
brackets, like this:

#include "someGroovyHeader.h"

This looks for the include file in the same directory as the source file, and you can add additional
paths to the compiler by using the -I command line flag.

Header files are C's way of importing features that can be used by your program. This is similar to
the Java import directive or the Perl use command. C's #include mechanism can be more flexible
since the header files can do anything, including defining functions and declaring variables in
addition to advertising available features.

It is a good idea to #include all of the headers of the features you need. If you try to use a
function that the compiler hasn't seen a declaration for, the compiler will try to infer the proper
argument types and return type of the function. Sometimes it can guess wrong.

When you look at a man page for a function, you will see which header file you will need. For
instance:

$ man 2 open
NAME
     open - open or create a file for reading or writing

SYNOPSIS
     #include <fcntl.h>

     int
     open(const char *path, int flags, mode_t mode);

The man page tells you that you will need to have #include <fcntl.h> before you use the
open() function.

One common misconception that folks have is that including a header file is all that is necessary
to use a feature. Many times that is the case, particularly with functions that live in the standard
C library or are standard Unix API calls. Sometimes, in addition to #including a header file, you
will also need to tell the linker to use a specific library, such as a cryto library or a UI framework.
Example 1.1 includes -lm in the command line. The man page for a function often tell you if you
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need to link in a specific library, and third-party toolkits should have some kind of documentation
to let you know what you have to do to use it.

The Objective-C language adds a #import directive to the preprocessor that does the same job
as #include, but with one important difference: if you #include the same file twice, it will only
actually get included once. Why is this an issue? If you're not careful, multiple inclusions of a
header file can lead to compiler or linker errors. The author of the header file has to put in special
guards to protect against multiple-inclusion. Because the Objective-C compiler has #import,
header file authors don't have to worry about such details.

Macro expansion
The C preprocessor does simple textual manipulations. You define a sequence of characters to be
replaced by another sequence by using #define:

#define PI 3.14159

will replace the word “PI” with “3.14159” before the file gets shipped off to the compiler. This is
handy for making symbolic constants. (In reality you'd really want to #include <math.h> and use
the value of M_PI.

Macros can also have arguments, and these arguments get textually substituted. Define macros
with arguments like this:

#define AVERAGE(x,y)   ((x) + (y) / 2)

and you can use it like this:

Table 1.1. Macro Expansion

Code Expands to

x = AVERAGE (3, 4); x = (3 + 4) / 2;

x = AVERAGE (PI,
23);

x = (PI + 23) /2;

x = (PI + 23) /2; x = (3.14159 + 23) / 2;

You can see that macro expansion is recursive, with symbols getting continually expanded until
there are no more. Luckily the preprocessor is smart enough to not let you define a self-referential
macro, being expanded until memory runs out.

Using all-uppercase for macro names is just a convention. You can make macros using lower case
letters, numbers, underscores, etc. Issues invloving macros are explored in the compiler chapter of
the book “Advanced Mac OS X Programming”.

Example 1.2 shows some macros in action:

Example 1.2. macros.c

// macros.c -- look at C Preprocessor macros

/* compile with:
cc -g -Wall -o macros macros.c
*/

#include <stdio.h>      // for printf()
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// make some symbolic constants
#define PI              3.14159
#define Version         "beta5"

// make some macros
#define SQUARE(x)               ((x) * (x))
#define AreaOfACircle(r)        (PI * SQUARE(r))

int main (int argc, char *argv[])
{
    printf ("Welcome to version %s of macros\n", Version);
    printf ("The area of a circle with radius 5 is %f\n",
            AreaOfACircle(5));

    return (0);

} // main

Note that you can give printf() (short for “print formatted” some format specifiers that tell it
to look for values after the first string in the list of arguments you pass it, like “%f” for a floating
point value. Many languages and libraries have adopted printf's format specifiers, so they are not
going to be explained here.

Conditional compilation
C is a language that has been implemented on a huge variety of different computing platforms,
from the Apple II up through Crays and MacPros. When you write code that runs on different
platforms, you frequently have code that is peculiar to each specific platform, but you do not want
that code to be included on the other platforms.

C uses the preprocessor to help you solve this problem. The preprocessor can conditionally
remove chunks of text from your program using the #ifdef, #else, and #endif commands.

For instance:

#ifdef SYMBOL_NAME
// first chunk of text
#else
// second chunk of text
#endif

If the symbol SYMBOL_NAME has been #defined previously, let the first chunk of text through and
drop the second chunk of text on the floor. If SYMBOL_NAME has not been #defined, the second
chunk remains and the first chunk gets dropped.

If you have a symbol with a numeric value, you can use #if instead of #ifdef. If the symbol
(or constant) given to #if is not zero, the first chunk of text survives. If that symbol is zero,
the second chunk is what makes it through. #if can also be used with undefined symbols. An
undefined symbol is interpreted as a false value as far as #if is concerned.

Example 1.3. conditional.c

// conditional.c -- look at conditional compilation

/* compile with:
cc -g -Wall -o conditional conditional.c
*/
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#include <stdio.h>      // for printf()

int main (int argc, char *argv[])
{
#define THING1

#ifdef THING1
    printf ("thing1 defined\n");
#else
    printf ("thing1 is not defined\n");
#endif

#ifdef THING2
    printf ("thing2 is defined\n");
#else
    printf ("thing2 is not defined\n");
#endif

    return (0);

} // main

A sample run:

$ ./conditional
thing1 defined
thing2 is not defined

One handy use of #if with constant values (rather than the name of a symbol) is to do a block
“comment out” of a big chunk of stuff. Example 1.4 shows #ifs and constants in action.

Example 1.4. leaveout.c

// leaveout.c -- use the preprocessor to comment out a chunk of code

/* compile with:
cc -g -Wall -o leaveout leaveout.c
*/

#include <stdio.h>      // for printf()

int main (int argc, char *argv[])
{
#if 0
    printf ("oh happy day\n");
    printf ("bork bork bork\n");
    we_can even have syntax errors in here
    since the compiler will never see this part
#endif

#if 1
    printf ("this is included.  wheee.\n");
#endif

    printf ("that is all folks\n");

    return (0);

} // main
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A sample run:

$ ./leaveout
this is included.  wheee.
that is all folks

Constants
OK, we're done with the preprocessor for now, and it's time to dig into some features of the C
language. Like all other languages, C lets you specify constant values in your code:

integer constant: 1234

floating point constant: 3.14159

single character constant: 'c'

string constant: "I seem to be a verb"

Notice that different quotes are used to discriminate between single-character constants (single-
quote '), and string constants (double-quote ").

With characters there are some variations that indicate to the compiler a special character should
be used. A backslash escapes the next character so that it does not get interpreted. For example,
this string constant has an embedded double quote:

"hello double quote \" you are so cute"

Without the escaping you would get a syntax error since the double quote would terminate the
string constant, and “you are so cute” would be interpreted as more C code. Escaping also gives
special meaning to some characters inside character constants and string constants:

\n Newline

\r Return character

\t Tab

\\ Backslash

Specific byte values can be given in octal (base-8) by using \### such as \007 causes the terminal
to beep, and \075 is the equals signs.

\007 Beep character

\075 Equals sign

\u#### Unicode character whose encoding is ####. So \u005c is the backslash character.

The ascii man page has a list of characters and their numerical value.

Integer constants can be expressed in decimal (base-10), octal (base-8), and hexadecimal
(base-16). Octal constants have a leading zero, and hex constants have a leading 0x:

octal constant: 0217

hex constant: 0xF33DF4C3

Example 1.5 shows literal constants in-use:
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Example 1.5. constants.c

// constants.c -- show various constants

/* compile with:
cc -g -o constants constants.c
*/

#include <stdio.h>      // for printf()

int main (int argc, char *argv[])
{
    printf ("some integer constants: %d %d %d %d\n",
            1, 3, 32767, -521);
    printf ("some floating-point constants: %f %f %f %f\n",
            3.14159, 1.414213, 1.5, 2.0);
    printf ("single character constants: %c%c%c%c%c\n",
            'W', 'P', '\114', '\125', '\107');
    printf ("and finally a character string constant: '%s'\n",
            "this is a string");

    return (0);

} // main

A sample run:

$ ./constants
some integer constants: 1 3 32767 -521
some floating-point constants: 3.141590 1.414213 1.500000 2.000000
single character constants: WPLUG
and finally a character string constant: 'this is a string'

Data Types
C has two fundamental data types: integer and floating point. Everything else is an interpretation
of one of these types, such as characters being short integers, or an aggregation of these types,
with arrays of characters are strings, a group of three pointers can be a tree node, and so on.

These are the specific data types available:

Table 1.2. C Data Types

Name “Usual” Storage Size “Minimum” Storage
Size

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 2 bytes

long 4 bytes 4 bytes

long long 8 bytes 8 bytes

So, a long being a 4 byte (32 bit) number, can have values between -2,147,483,648 and
+2,147,483,467. Which is 31 bits of numerical data and 1 bit to indicate whether the number is
positive or negative (called the sign bit). 64-bit Mac systems have longs being 64-bits (8 bytes).
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The header file <limits.h> includes #defined constants for examining the maximum and
minimum values for the basic data types. The constants have names like INT_MIN, INT_MAX,
SHRT_MIN, SHRT_MAX, and so on.

The integer types can also be declared unsigned, meaning that the sign bit is considered to be
actual data. An unsigned long therefore can have values between 0 and 4,294,967,295. If you
want a “byte” data type, use an unsigned char.

There are two floating point data types: float and double, which differ by how many significant
bits of storage they have.

You can run this to see what limits your platform has:

Example 1.6. limits.c

// limits.c -- show some info about various built-in data types

/* compile with:
cc -g -Wall -o limits limits.c
*/

#include <limits.h>       // for limit constants
#include <stdio.h>        // for printf()
#include <stdlib.h>       // for EXIT_SUCCESS

int main (int argc, char *argv[])
{
    printf ("      type:  bytes %14s %14s %14s\n",
            "min value", "max value", "max unsigned");

    printf ("      char:  %5ld %14d %14d %14u\n", sizeof(char), 
            CHAR_MIN, CHAR_MAX, UCHAR_MAX);

    printf ("     short:  %5ld %14d %14d %14u\n", sizeof(short), 
            SHRT_MIN, SHRT_MAX, USHRT_MAX);

    printf ("       int:  %5ld %14d %14d %14u\n", sizeof(int), 
            INT_MIN, INT_MAX, UINT_MAX);

    printf ("      long:  %5ld %14ld %14ld %14lu\n", sizeof(long), 
            LONG_MIN, LONG_MAX, ULONG_MAX);

// not available on all platforms
#ifdef LLONG_MIN
    printf (" long long:  %5ld %20lld %20lld \n"
            "                  %20llu\n", sizeof(long long), 
            LLONG_MIN, LLONG_MAX, (long long)ULLONG_MAX);
#endif
    printf ("     float:  %5ld\n", sizeof(float));
    printf ("    double:  %5ld\n", sizeof(double));

    return (EXIT_SUCCESS);

} // main

This is what it prints on my machine:

$ ./limits
      type:  bytes      min value      max value   max unsigned
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      char:      1           -128            127            255
     short:      2         -32768          32767          65535
       int:      4    -2147483648     2147483647     4294967295
      long:      4    -2147483648     2147483647     4294967295
 long long:      8 -9223372036854775808  9223372036854775807 
                  18446744073709551615
     float:      4
    double:      8

The sizeof operator evaluates to the number of bytes of the indicated type. Later on, when
we talk about structures, sizeof can be used to figure out how many bytes a structure takes.
Note that sizeof is a compile time operator, not a run time function. A common mistake new C
programmers make is to try to use sizeof on a parameter passed to a function to try to figure out
how much data you hav to maniupulate.

Predefined Types
Since the standard C types cannot be depended on to have a specific storage size, the standard C
library and the Unix API define some more abstract integral types that should be used, like

size_t An unsigned integral value for indicating sizes (in bytes) of data types. Also used as
the type of argument for malloc(), which dynamically allocates memory. (malloc()
and memory issues are discussed in the Memory chapter of the book.)

pid_t An unsigned integral value for representing the process IDs in a Unix system.

uid_t An unsigned integral value for representing the user ID in a Unix system.

There are many more types. The man pages for functions indicate which of these types they use.
So why go to all the trouble to make these specific types? For one, it does help to make functions
more self-describing. If a parameter is a pid_t, you can be reasonably sure that you should pass
a Unix process id. Other types, like uintptr_t that is large enough to hold both an integer and
pointer type, help make your code safer, just in case integers and pointers (which we'll talk about
in detail later) need to be stored into the same variable.

Enumerations
Related to the integer types are enums. enums are another way of creating symbolic constants (the
first way is using the preprocessor that you saw before). In C enums are just a little syntactic sugar
around integer constants. In particular, there is no error checking involved when you pass an enum
value around. There is no support to make sure that a function that accepts an enum type will only
get the predefined enum values. It's all just integer types under the hood.

The syntax for defining an enum is:

enum {
    Hearts,
    Moons, 
    Stars, 
    Clovers
};

The first symbol gets a value of zero, and subsequent symbols increment the previous value by
one. So the above snippet would have values of:
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enum {
    Hearts,     // 0
    Moons,      // 1
    Stars,      // 2
    Clovers     // 3
};

You can also assign values:

enum {
    Doc,                // 0
    Bashful,            // 1
    Dopey = 23,         // 23
    Cranky,             // 24
    Funky,              // 25
    Shifty = 23,        // 23
    Hungry = 42,        // 42

    Mask1 = 0xFFFF0000,
    Mask2 = 0x00000040
};

One nice side effect of using enums (as opposed to just #defining everything) is that sometimes
the debugger can map integer values back to the enum name and show you data symbolically.

Variables
Variables are where you store values that can change over the lifetime of your program. C requires
you to declare all variables before you use them (unlike Python or Javascript). Older versions of C
require youto declare all of the variables in a function before any executable lines of code. Newer
versions of C, and Objective-C lift this restriction, so you can declare variables immediately
before first-use if you wish (like in Java and C++).

The declaration syntax for a variable is:

   data-type variable-name [ = optional-initializer];

Where data-type is one of the predefined data types seen above, or a composite data type defined
by you or by the system. Variables can be local to functions or global to the whole file (or even the
whole program) depending on where they are defined.

A variable declared inside of a function is local to that function and cannot been seen outside of
the function. This is like my variables in Perl or var variables in Javascript. The storage for the
variable goes away when the function exits. In C, local variables can have a random, uninitialized
value. Another common C programmer mistake is forgetting to initialize a local variable, and then
having a garbage value cause strange non-reproucible bugs.

A variable declared outside of any functions is global, and unlike local variables, is initialized to
zero.

C also introduces the idea of a “static variable” (one of the many uses of the term static in C). A
static variable is a variable that syntactically is local to a function, but the value persists from call
to call as if it was a global variable. In reality, it really is a global variable with local scope, and is
initialized to zero automatically.

Example 1.7 shows some simple variable declarations.
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Example 1.7. variables.c

// variables.c -- some simple variable declarations

/* compile with:
cc -g -Wall -o variables variables.c
*/

#include <stdio.h>     // for printf()

int aGlobalInt;         // global
float pi = 3.14159;     // global

void someFunction ()
{
    int aLocalVariable = 0;     // local, random value but 
                                //     initialized to zero
    unsigned short myShort;     // local, random value
    static unsigned char aByte; // static, initialized to 
                                //     zero, persists

    myShort = 500 + aLocalVariable;
    aGlobalInt = 5;

    aByte++;

    printf ("aByte: %d, myShort: %d  aGlobalInt: %d\n", 
            aByte, myShort, aGlobalInt);

} // someFunction

int main (int argc, char *argv[])
{
    printf ("aGlobalInt before someFunction: %d\n", aGlobalInt);
    someFunction ();

    printf( "aGlobalInt after someFunction: %d\n", aGlobalInt);
    someFunction ();

    aGlobalInt = 23;
    someFunction ();

    return (0);

} // main

And the program in action:

$ ./variables
aGlobalInt before someFunction: 0
aByte: 1, myShort: 500  aGlobalInt: 5
aGlobalInt after someFunction: 5
aByte: 2, myShort: 500  aGlobalInt: 5
aByte: 3, myShort: 500  aGlobalInt: 5

You should always initialize variables declared in functions before you use them. Otherwise, they
will have undefined (random) values, which if used can cause your program to behave in a random
fashion. Note that global variables and static variables are initialized to zero for you.
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LValues
You will sometimes hear folks (or compiler messages) refer to the term “lvalue”. That just means
something can appear on the left side of an assignment operator. For example:

int myVar;
myVar = 5;

myVar is an lvalue, and this is legal code.

But

7 = 23;

or

(i == 3) = 23;

is not. Sometimes you hear the fancy term “rvalue”, and it just means the expression on the right
side of an assignment operator.

Operators
The C operators, like + - * /, have been adopted by most modern languages and should be familiar.
The increment and decrement operators may be new to some:

x++ Use the value of x, then add 1 to x

++x Add 1 to x, then use the value

x-- Use the value of x, then subtract 1 from x

--x Subtract 1 from x, then use the value

Plus there are shorthand assignment operators. x += y is the same as x = x + y This idea also
generalizes to +, -, *, /, and other operators (like the bitwise operators).

Bitwise Operators
Many languages have adopted C's bitwise operators. Those languages tend not to need to do as
much bit twiddling as C, so the bitwise operators are mentioned in passing and are relegated to the
reference chapter nobody reads. But sometimes you just have to be able to set or test an individual
bit. In C, particularly using the Unix APIs, you need to do that on a regular basis.

The bitwise operators let you do bitwise AND, OR, XOR, and complement to integral values. You
can also shift the bits left or right within an integer value.

The examples below use these two numbers:

Figure 1.2  Binary
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A & B has a result that has bits set only if bits are set in both A and B.

Figure 1.3  AND (&)

A | B has a result that has bits set if bits are set in either A or B.

Figure 1.4  OR (|)

A ^ B has a result that has bits set if bits are set in either A or B, but not in both. The “or” in this
case is like when the wait staff asks, “Would you like soup or salad with that?”

Figure 1.5  XOR (^)

A ~ flips the bits from zero to 1 and 1 to zero.

Figure 1.6  NOT (~)
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A << n shifts the bits of A n places to the left, filling in zeros in the low-numbered bits.

Figure 1.7  A << 2

Note that the two high-order 1 bits got shifted out and dropped and zero got shifted in. Note that
due to how binary math works, shifting to the left is the same as multiplying by two. Modern
processors can shift much faster than they can multiply, which can make for a handy optimization.

A >> n shifts the bits of A n places to the right.

There is one complication with shift-right. The high-order bit of a piece of signed integer data
is the sign bit indicating whether the value is negative or positive. When you shift right, do
you preserve the sign bit, or fill it in with zeros? The rule C uses is: if the number is signed and
negative, the sign bit fills in with 1:

Figure 1.8  A >> 2

Otherwise, for unsigned integers or positive numbers, the sign bit fills in with zero.

Figure 1.9  Bitwise Shift Right
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BitMasks
The AND, OR, and NOT operators are handy when dealing with bitmasks. Bitmasking is a technique
where information can be compactly stored in small integers by attaching meaning to specific bit
positions.

Using bitmasks:

1. Define a constant that matches the bit you wish to deal with.

#define MY_BIT_VALUE 8  // 00001000

Or use bit shifting.

#define MY_BIT_VALUE (1 << 3) // 00001000

2. Set the bit with bitwise OR.

myFlags |= MY_BIT_VALUE

Figure 1.10  Set Flag

3. Test the bit with bitwise AND.

if (myFlags & MY_BIT_VALUE) {
    // do something appropriate
}

Figure 1.11  Test Flag

4. Clear the bit by using a complement and an AND.

myFlags &= ~MY_BIT_VALUE;
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This is a bit trickier. What is needed is a new mask that will let through all the original values
of the bits of the variable you are masking, but leave the masked-out bit behind.

Figure 1.12  Clear Flag

When using a mask with multiple bits set, it is safer to compare against the mask rather than
doing a simple logical test:

#define MULTI_BITS      0xF0    // 11110000

and assuming that myFlags is 0x61 (01100001), the statement

if (myFlags & MULTI_BITS) {
    // do something if all bits are set
}

is bad code. The result of the bitwise-AND is:

Figure 1.13  Result of bitwise-AND

The result is 0x60, which will be treated by the if as a true value (everything except zero is
considered a true value), even if only a couple of the bits in MULTI_BITS is set. It is more correct to
do

if ((myFlags & MULTI_BITS) == MULTIBITS) {
    // do something if all bits are set
}

Example 1.8. bitmask.c

// bitmask.c -- play with bitmasks

/* compile with:
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cc -g -Wall -o bitmask bitmask.c
*/

#include <stdio.h>      // for printf()

#define THING_1_MASK    1         // 00000001
#define THING_2_MASK    2         // 00000010
#define THING_3_MASK    4         // 00000100
#define ALL_THINGS      (THING_1_MASK | THING_2_MASK | THING_3_MASK)
                                  // 00000111

#define ANOTHER_MASK    (1 <<l5)  // 00100000
#define ANOTHER_MASK_2  (1 <<l6)  // 01000000

#define ALL_ANOTHERS    (ANOTHER_MASK | ANOTHER_MASK_2)  // 01100000
#define ALL_USEFUL_BITS (ALL_THINGS | ALL_ANOTHERS)      // 01100111

void showMaskValue (int value)
{
    printf ("\n"); // space out the output
    printf ("value %x:\n", value);
    
    if (value & THING_1_MASK) printf ("  THING_1\n");
    if (value & THING_2_MASK) printf ("  THING_2\n");
    if (value & THING_3_MASK) printf ("  THING_3\n");

    if (value & ANOTHER_MASK) printf ("  ANOTHER_MASK\n");
    if (value & ANOTHER_MASK_2) 
                              printf ("  ANOTHER_MASK\n");

    if ((value & ALL_ANOTHERS) == ALL_ANOTHERS) 
                              printf ("  ALL ANOTHERS\n");
} // showMaskValue

int setBits (int value, int maskValue)
{
    // set a bit by just OR-ing in a value
    value |= maskValue;
    return (value);

} // setBits

int clearBits (int value, int maskValue)
{
    // to clear a bit, we and it with the complement of the mask.

    value &= ~maskValue;
    return (value);

} // clearBits

int main (int argc, char *argv[])
{
    int intval = 0;

    intval = setBits (intval, THING_1_MASK);    // 00000001 = 0x01
    intval = setBits (intval, THING_3_MASK);    // 00000101 = 0x05
    showMaskValue (intval);

    intval = setBits (intval, ALL_ANOTHERS);    // 01100101 = 0x65
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    intval = clearBits (intval, THING_2_MASK);  // 01100101 = 0x65
    intval = clearBits (intval, THING_3_MASK);  // 01100001 = 0x61
    showMaskValue (intval);

    return (0);

} // main

A sample run:

$ ./bitmask

value 5:
  THING_1
  THING_3

value 61:
  THING_1
  ANOTHER_MASK
  ANOTHER_MASK
  ALL ANOTHERS

Functions
Functions are C's way of breaking up code into smaller pieces. A function is composed of a
declaration of a return type, the name of the function, and any parameters it takes. Following
this declaration is a block of code surrounded by braces. Inside of the braces can be variable
declarations and executable code. For example:

int someFunction (int a, float b, unsigned char c)
{
    int aLocalVar;

    printf ("the character is %c\n", c);
    aLocalVar = a + floor(b);

    return (aLocalVar * 2);  // ok, so this does nothing useful

} // someFunction

The return statement causes the function to exit immediately and the expression that follows the
return statement is used as the return value of the function. (The parentheses around the return
value are optional, and their use is a personal preference.)

You can declare your function for others to use writing just the first declaration line:

int someFunction (int a, float b, unsigned char c);

This is called a “function prototype”, or just “prototype” for short. This function prototype tells
the compiler “if you see someone calling someFunction it had better take three arguments, an int,
a float, and an unsigned char. If someone is using the return value, it should be assigned to an
int.” With that information the compiler can help error-check your code. Due to C's history, any
functions that are used without including the prototype are assumed to return an int and take an
arbitrary number of int-sized arguments. This can wreak havoc if you pass a value larger than
an int, like a double. The calling-side and the function side get confused. Header files are handy
places to put function prototypes.
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Even though C has procedures (functions that return no values), they are still called functions. A C
function that does not return anything is declared to return void. A function that does not take any
parameters has void listed in its argument list:

void functionReturnsAndTakesNothing (void);

In C, parameters to functions are passed by value. That is, the functions get copies of the
arguments. Inside of a function, you and fold, spindle and mutilate the value of the parameters
all you want, and the caller will never notice. To achieve pass by reference, where changes to the
variable are visible to the caller, you must use pointers, described in the next chapter.

Lastly, functions can be recursive, that is, they can call themselves. The canonical example of a
recursive function is calculating factorials. That is, X! is equal to 1 * 2 * 3 ... * X-1 * X 

Example 1.9. factorial.c

// factorial.c -- calculate factorials recursively

/* compile with:
cc -g -Wall -o factorial factorial.c
*/

#include <stdio.h>      // for printf()

long long factorial (long long value)
{
    if (value == 1) {
        return (1);
    } else {
        return (value * factorial (value - 1));
    }
} // factorial

int main (int argc, char *argv[])
{
    printf ("factorial of 16 is %lld\n", factorial(16));

    return (0);
} // main

And here's a sample run:

$ ./factorial
factorial of 16 is 20922789888000

(factorials add up quickly)

Logical Expressions
In C, any expression (even assignment) can be used as a truth value. An expression evaluating to
zero is considered a false value. Everything else is considered true. For instance, this is a valid
loop: 

while (result = read(...)) {
    // do stuff with result
    ...
}
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read() reads a number of bytes from an open file. Upon a successful read it returns the number
of bytes read. When the end of file is reached, it returns zero. When this loop is executed, the
assignment inside of the parentheses is evaluated first.

When end of file is reached read() returns zero, result takes the value of zero, and the value of
the expression is zero (false), so the loop terminates.

To compare value, use ==. A common, common error is to use a single = (assignment) when you
mean to use the == operator. The result of an == expression is a truth value. For instance:

• 5 == 10 results in zero. 5 == 5 results in a non-zero value (you cannot depend on the actual
value, just that it is non-zero).

• != is the “not equal” operator.

• 5 != 10 results in a non-zero value, and 5 != 5 results in zero.

You can also use <, >, <=, and >= for inequality tests.

Logical Operators
Expressions can be chained together with the logical operators, && (AND) || (OR), ! (NOT).
Unlike their single-character siblings, logical AND and OR deal with the total truth value rather
than individual bits. That is:

if (a && b) {
    doSomething ();
}

doSomething() is only invoked if both a and b are non-zero. Likewise, 

if (a || b) {
    doSomething ();
}

doSomething() is only invoked if either a or b are non-zero.

The “not” operator (!), of course, flips the truth meaning of the expression.

if (!var) {
    doSomething ();
}

doSomething() is invoked only if var is zero.

Note that && and || short circuit if the value of the total expression can be determined after the
evaluation of the first part.

if ( (x != 0) && (y = z / x) ) ...

is a handy way to check for zero before doing a divide. If x is 0, the first expression will evaluate
to false. For a logical AND to be true both sides of the AND need to be true. Since the first part is
false, it does not matter what the second part is since there is no way the entire expression can be
true, so the second expression is not evaluated.

Likewise, with ||, if the first part is true, the whole expression is true and there is no need to
evaluate the second part.
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Control Structures
The C control statements have found their way into many of the languages in common use. This
will be a very quick overview of what they do.

Where you see expression below you can use any logical expression. Braces are put around the
part where you put in code that gets executed. If you have only one line of code, you can omit the
braces. Keeping everything fully braced makes adding code to the blocks easier, and it eliminates
some classes of errors. (It is also a good idea in any case.)

if

if (expression) {
    // true-branch
} else {
    // false-branch
}

Evaluate the expression and execute one of the branches. The else part is optional. When you
have nested if statements, the else matches to the closest if:

if (expression1) {
    if (expression2) {
        // true-true branch
    } else {
        // true-false branch
    }   
} 

This situation can look ambiguous without braces:

if (expression1)
    if (expression2)
        // true-true-branch
else
    // something else

This is erroneous indentation, but the behavior will be like that of the braced statements.

Related to the if statement is the conditional expression (also known as the ternary, trinary, or
question-mark operator).

This

   x = (expression) ? a : b;

is the same as

if (expression) {
    x = a;
} else {
    x = b;
}

but does it all in one expression.

while
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while (expression) {
    // executes while expression is true
}

while executes its code zero or more times, so long as the expression evaluates to a true value.
The expression is evaluated every time through the loop, before the body is executed.

for
for (initializer; expression; increment) {
    // body
}

This is mostly the same as this:

initializer;

while (expression) {
    // body
    increment;
}

Here is a real for loop:

for (i = 0; i < 10; i++) {
    printf ("%d\n", i);
}

This prints the numbers from zero to 9.

for is mostly the same as the while loop shown above, except in the face of the continue
statement. continue can be used in any loop to immediately jump to the beginning of the loop,
bypassing any subsequent instructions. With the for loop, the increment part is performed on a
continue, while with the while loop given above, the increment would not happen.

The break statement breaks out of the loop entirely, bypassing the increment stage. break can
be used to break out of any loop. When nested loops are involved, break only breaks out of the
innermost one. To break out of multiple loops you need to use a goto.

do-while
do {
    // body
} while (expression);

The body of the loop is executed one or more times. If expression evaluates to zero, the loop
terminates.

switch
switch is C's case statement. Given an integral value, choose a block of code to execute.

For instance:

myChar = getchar();
switch (myChar) {
    case 'a':  printf ("got an a\n");  break;
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    case 'e':  printf ("got an e\n");  break;
    case '9':  printf ("got a 9\n");
    case '8':  printf ("got an 8\n");
    case '7':  printf ("got a 7\n"); break;
    default:   printf ("got something else");
}

There are some properties of C's switch statement that trip up programmers used to other
languages. The first is that the value given to switch is an integer value. It cannot be a float or a
character string. A single character is OK since a char is really an int type. The second is that
the case labels must also be integer, constant values. You cannot use variables or strings there. In
other words, this is very illegal:

int x = 5;
switch (someVar) {
     case "hello":  // can't use a string
     case x: // can't use a variable
     case 'x': // this is ok.  it's a constant
}

Another bit of odd behavior is that when a case label starts executing, code flow will go straight
down until it hits a break. In the example above, if myChar is 9, the program will print out

got a 9
got an 8
got a 7

Because execution will start at the case '9' label, drop down into the '8' label and the '7' label
before hitting a break.

goto
goto is an unconditional branch to a label anywhere in the same function the goto is used. You
can even goto the middle of a for or a switch if you wish.

For instance:

for (i = 0; i < 10; i++) {
    for (j = 0; j < 10; j++) {
        if ((i == 5) && (j == 9)) {
            goto bailout;
        }
    }
}

bailout:
printf ("done!\n");

For the More Curious: Multiple Source Files
Once a program gets beyond a trivial stage it will require using multiple source files. In C, each
file is treated as an independent unit.

Within each file there can be variables global to just that file as well as functions that are only
visible in that file. When you precede the variable or function declaration with static visibility of
the variable or function becomes restricted to only that source file. If you do not declare functions
or global variables static, they will be visible to other files.
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“Visibility” means visibility to the linker so that the linker can patch up references between files.

Here is an example program composed of 4 files: two source files and two header files.

Example 1.10. file-1.h

extern int g_globalVar;

Example 1.11. file-1.c

// file-1.c -- half of a program split across two files

/* compile with:
cc -g -Wall -c file-1.c
*/

/* link with
cc -o multifile file-1.o file-2.o 
*/

// include our definitions
#include "file-1.h"

// see the stuff file-2 is exporting
#include "file-2.h"

#include <stdio.h>      // for printf()

static int localVar;

int g_globalVar;

static void localFunction ()
{
    printf ("this is file 1's local function. ");
    printf ("No arguments passed.  localVar is %d\n", localVar);

} // localFunction

int main (int argc, char *argv[])
{
    float pi;

    localFunction ();
    pi = file2pi ();

    localVar = 23;
    g_globalVar = 23;
    
    printf ("g_globalVar before is %d\n", g_globalVar);
    printf ("localVar before is %d\n", localVar);

    file2Function ();

    printf ("g_globalVar was changed to %d\n", g_globalVar);
    printf ("localVar after is still %d\n", localVar);
    return (0);
} // main
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Example 1.12. file-2.h

// returs the value of Pi
float file2pi (void);

// changes the value of g_globalVar
void file2Function (void);

Example 1.13. file-2.c

// file-2.c -- second half of a program split across two files

/* compile with:
cc -g -Wall -c file-2.c
*/

#include "file-1.h"
#include "file-2.h"

static double localVar;

static float localFunction (char dummy)
{
    return (3.14159);
} // localFunction

float file2pi (void)
{
    return (localFunction('x'));
} // file2pi

// changes the value of g_globalVar
void file2Function (void)
{
    g_globalVar = 42;
    localVar = 1.2345;
} // file2Function

This one is a little more complicated to compile and link:

$ cc -g -Wall -c file-1.c
$ cc -g -Wall -c file-2.c
$ cc -o multifile file-1.o file-2.o

When you have multiple files like this, you would usually use makefiles or an IDE like Xcode to
put things together.

A sample run:

$ ./multifile
this is file 1's local function. No arguments passed.  localVar is 0
g_globalVar before is 23
localVar before is 23
g_globalVar was changed to 42
localVar after is still 23

Some things of interest to note:

• The use of extern in file-1.h. That declaration is what will be in file-2.c; that is, file-2.c
knows about the existence of a global variable called g_globalVar, but the compiler does not
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actually allocate any storage for it since the variable was declared extern. When the compiler
compiles file-1.c, it does not have g_globalVar declared as extern, and so the compiler will
allocate some space for it.

• Static variables and functions are truly private to the file. Both of the source files have their own
localVar and localFunction with radically different definitions.

• The header file is the means of communication between the two files. The headers contain the
“published API,” or set of features that the particular file brings to the table. Implementation
details are left to the innards of the file.

This shows who can see and call what:

Figure 1.14  Two-File Scope
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For the More Curious: Common Compiler
Errors
The C compiler can be pretty dumb when it encounters errors. Usually a simple mistake will
cascade into a huge flurry of syntax errors. In general, when you get a huge pile of errors, fix the
first couple and then try compiling again, especially if the errors start looking weird.

For example, consider the program variables.c. If you remove a single semicolon (after the
constant 3.14159) you will get these errors:

$ cc -g -o variables variables.c
variables.c:13: illegal declaration, missing `;' after `3.14159'
cpp-precomp: warning:errors during smart preprocessing, \
retrying in basic mode
variables.c:16: parse error before "void"
variables.c:22: conflicting types for `myShort'
variables.c:19: previous declaration of `myShort'
variables.c:22: warning: data definition has no type or storage class
variables.c:23: warning: data definition has no type or storage class
variables.c:25: parse error before '++' token
variables.c:27: parse error before string constant
variables.c:28: warning: conflicting types for function `printf'
variables.c:28: warning: data definition has no type or storage class

For the first error, it is pretty obvious what went wrong (which makes it easy to fix). The
subsequent errors and warnings are bogus. Add in that one semicolon back and life will be happy.

Here are some errors you will probably see, and what they (probably) mean. (Do not worry if
some of them are gibberish now. Many of the concepts will be explained in the next chapter.)

warning: ANSI C forbids

newline in string constant

Missing double quote from the end of a literal string.

structure has no member

named `indData' union has

no member named `shoeSize'

`aGlobalint' undeclared

(first use in this function)

Using a variable or structure member that has not been
declared. Double check the case and spelling (both are
significant).

warning: control reaches end

of non-void function

A function is declared as returning a value, but there is no
return statement.

unterminated #if

conditional

You have an #if or #ifdef statement, but not the closing
#endif. Check to make sure you have end #endifs when
nesting them.

illegal function call, found

`blah'

Check to see if there is a missing “?” using the ?: operator.
For example, this code: (*ptrvar) "blah" : "ook"; will
generate this error.

illegal member declaration,

missing name, found `}'

This happens if you forget the semicolon at the end of a
union declaration.

typedef struct Individual {
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    int type;
    union {
        Person person;
        Alien  alien;
    } indData
} Individual;

will cause this error.

`Alien' redeclared as

different kind of symbol

Make sure you do not use the same name for different
purposes, like having typedef struct Alien; followed by
enum { Human, Alien }.

undefined type, found

`individual'

The type of a parameter in a function declaration does not
exist. For instance, this error was caused by

      void fillAlien (individual *individual)

The proper type name is Individual (upper case I).

warning: comparison between

pointer and integer

Make sure the types on either side of the == or != sign make
sense.

Challenge
The Fibonacci number sequence is a sequence that looks like this: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
That is, it starts with 1, 1, then subsequent numbers are the sum of the previous two.

There are two ways of calculating the nth fibonacci number, either iteratively (run a loop and
calculate the numbers), or recursively (finding the nth Fibonacci number by calculating the n-1 and
n-2 Fibonacci number.) For Fibonacci numbers F(1) and F(2), return a value of 1.

Implement both methods of calculating the Fibonacci numbers and compare their performance
characteristics.
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2
A C Refresher, Part 2:

Pointers, Structures, and
Arrays

The single C feature that seems to cause most programmers a lot of problems are pointers.
Pointers are the use of memory addresses to indicate what data to operate on, providing a layer of
indirection that becomes handy for solving a lot of problems. Unfortunately the syntax is a bit odd,
and it is easy to get confused amongst all the &s and *s flying around.

C structures, the aggregation of individual basic data types, are used to package smaller bits of
data into a cohesive whole, so you can abstract data to a higher level. It is easier to tell a function,
“Here is a network address,” rather than telling it individually, “Here is a machine IP address,
here is a port, here is the network protocol to use.” Structures and pointers work closely together,
allowing structures to reference other structures to build webs of related variables.

Finally, arrays are linear collections of same-type chunks of data. Arrays and pointers are very
closely related, and ultimately understanding both arrays and pointers are necessary to fully grasp
how C deals with addresses and data.

Pointers
So, what is a pointer? It is nothing more than the address of a byte in memory. What can you do
with a pointer? You can read bytes starting from the address and you can write bytes starting at the
address. You can also calculate new addresses based on the original one.

Imagine that you like the book Zen and the Art of Motorcycle Maintenance. You come across a
particular passage that you think your friend would find interesting. You can either mail the book
over (which can be expensive), or you can send a postcard that says, “Zen, page 387, starting at
the first letter.” When he gets the postcard, he knows where to look to find the interesting passage.

A C pointer is like this postcard. It is a small amount of storage (there is only so much you can
write on a postcard) that references something larger. It is also a lot cheaper to send around.

Pointer syntax
Pointer syntax involves two special characters, the star (*) and the ampersand (&). The star pulls a
double duty; in some cases it is a description, and some cases it is an action. This duality is one of
the major causes of confusion.
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Here are the fundamental pieces of pointer syntax:

1. Pointer declaration

        char *ptrvar;

ptrvar is the postcard. On the Mac this variable is 4 bytes long and can point to any address
the program can access. The star in this case is for declaration. Reading the declaration
backwards it says “ptrvar * (is a pointer to) a char value.”

Something like

        int *fooby;

says “fooby * (is a pointer to) an int value.”

Just like other variable declarations, if these are found as variables in a function they will have
random values, like picking up a postcard from the recycling stack to erase and send again. In
any case you should initialize the variable.

2. Getting an address

The ampersand (&) yields an address in memory when it is applied to a variable. This gives you
the value to write on your postcard.

        int myVar;
        int *pointerToMyVar;
        pointerToMyVar = &myVar;

Now pointerToMyVar contains the address of the first byte of myVar. Equivalently, the postcard
pointerToMyVar has written on it where to find the beginning of the number that myVar stores.

3. Getting data from an address

The star is used again, this time as an action. When a star is used on a pointer variable on the
right-hand side of an assignment, it means “fetch.” It is the same as reading the location in the
book from the postcard, opening the book, turning to the page, and then reading at the first
letter there.

        int myVar = 12;
        int *pointerToMyVar = &myVar;
        int anotherInt;

        anotherInt = *pointerToMyVar;

Reading from right to left again, you have:

pointerToMyVar: Look at pointerToMyVar. Use the address
there.

*: Go fetch an int's worth of bytes from that
address.

=: Assign that int's worth of bytes.
anotherInt: To this variable.
Now anotherInt has the value 12.

4. Putting data to an address



An actual use of pointers: pass by reference

33

Once again the star is used. When it is used on a pointer on the left-hand side of an assignment,
it means “put”. It is like reading the book location from the postcard, opening the book, turning
to the page, then erasing the letter there and writing in a new letter.

Using the declarations above, this code:

        *pointerToMyVar = 42;

reading from right to left means:

42: Take this constant value
=: and assign it. To figure out where you want to

assign it, look at
pointerToMyVar: for where in memory to start storing the bytes

that comprise the value 42
*: now that you know where to store the data,

actually put the bytes there.

Without the star on the assignment, you would have pointerToMyVar = 42; which would be
wrong. That would write “42” onto the postcard, rather than on the pages of the book.

An actual use of pointers: pass by reference

As mentioned in the last chapter, arguments to functions are passed by value, meaning that the
values of the arguments are duplicated and then these duplicates are given to the function. The
function is free to change them without any impact on the caller.

Sometimes you want to pass arguments by reference and have the function fill in values so that the
caller can see the change. This is useful if you are returning more than one result from a function,
or you want the function to write into a pre-allocated buffer.

Pointers are used in this case. If you want a function to change an argument, have the function
take a pointer argument, and then pass a pointer to your variable. Here is an example:

Example 2.1. pass-reference.c

// pass-reference.c -- show pass by reference using pointers

/* compile with:
cc -g -Wall -o pass-reference pass-reference.c
*/

#include <stdio.h>        // for printf()

void addemUp (int a, int b, int *result)
{
    *result = a + b;
} // addemUp

int main (int argc, char *argv[])
{
    int answer;
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    addemUp (1, 2, &answer);

    printf ("1 + 2 = %d\n", answer);
    return (0);

} // main

A sample run:

$ ./pass-reference
1 + 2 = 3

Here is what is happening in memory:

Figure 2.1  Pass By Reference

The storage for the variable answer lives at address 0x2004, and extends for 4 bytes through
address 0x2007. The addemUp function gets called. The numeric values get written to memory
(pass by value, remember), and the address of the answer variable (0x2004) gets written to this
parameter memory.

When the function executes

    *result = a + b;

This is what it does:
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1. Figures out the values of a (1) and b (2).

2. Adds 1 + 2, and stores the result (3) somewhere. probably a processor register.

3. Looks at the value of the result variable (0x2004).

4. Writes the result (a four-byte int value that happens to be 3) starting at address 0x2004, which
happens to be the same place the variable answer is stored.

Another use for pointers: strings

C has no string type. There is a convention, though, where a run of characters ending with a zero
byte is considered a “string.” This is what a string looks like in memory (where the big X is a byte
with a value of zero):

Figure 2.2  C String

Starting at any address from 0x100 through 0x11B will result in a valid C “string.” You can use
such a string like this:

    char *myString;
    myString = "this is a sequence of chars";

Pulling this code apart you have:

char *myString myString is a pointer to a character. This is the postcard where the location
of the first letter of a sequence of characters starts.

"this is..." a sequence of bytes, terminated by a zero byte, that the compiler and linker
stick into read-only space. A literal string expression evaluates to the
address of the first byte of the sequence.

= Will assign the address value.

myString The postcard you are writing on has the location of the first “t” of “this is a
sequence of chars”

myString now has the value of 0x100, the address of the first character.

Note the continued pedantry of referring to “the first something of a sequence of somethings.”
Pointers have no intrinsic knowledge of what they point to. myString could point to the beginning
of “this is a sequence of chars,” or it could be made to point into the middle.
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OK, now that you have myString pointing to the first byte of the literal string, what can we do
with it?

You can get the first letter of the string by doing

  char charVar = *myString;

This assigns the value of “t” to charVar.

You can increment the pointer:

   myString++;

That makes myString point to the next character. Note that since there is no star attached to this
expression, nothing is done with the value being pointed to. There is no star operator to initiate a
reading or writing of the pointed-to value. This just changes the location value on the postcard.

myString now has the value of 0x101, the address of the second character.

  charVar = *myString;

assigns the value of “h” to charVar.

You can calculate the length of a “string” like this by counting characters until you hit the zero
byte at the end. For example:

Example 2.2. strlen1.c

// strlen1.c -- calculate the length of a C string

/* compile with:
cc -g -Wall -o strlen1 strlen1.c
*/

#include <stdio.h>        // for printf()

int main (int argc, char *argv[])
{
    char *myString = "this is a sequence of chars";
    int length = 0;

    while (*myString != '\0') {
        length++;
        myString++;
    }

    printf ("the length of the string is %d\n", length);
    return (0);

} // main

See how it runs:

$ ./strlen1
the length of the string is 27
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Things of note: the expression '\0' is a way of signifying a zero byte. You could use just a naked
zero in the expression, but using '\0' makes it clear to whomever is reading the code that a
character value is being used.

The above idiom, using a pointer to scan through a sequence of data, is very common in C, and it
will frequently be abbreviated. This is the same program, but written more idiomatically:

Example 2.3. strlen2.c

// strlen2.c -- calculate the length of a C string, idiomatically

/* compile with:
cc -g -Wall -o strlen2 strlen2.c
*/

#include <stdio.h>        // for printf()

int main (int argc, char *argv[])
{
    char *myString = "this is a sequence of chars";
    int length = 0;

    while (*myString++) {
        length++;
    }

    printf ("the length of the string is %d\n", length);
    return (0);

} // main

Pull apart the inner loop:

    while (*myString++) {
        length++;
    }

*myString++ is the same as *myString followed by myString++. What does that mean?
*myString is executed, which looks at the postcard (myString), follows the address and fetches
a value (the star operator). That value is then used to decide whether the body of the while loop
should be evaluated. Then myString++ is evaluated, which updates the location written on the
postcard to indicate the next letter to process.

As an aside, this loop is how the standard library call strlen() is implemented. This is an O(N)
operation, so it is not a function you would call if you do not have to (like every time in the
controlling expression of a while loop).

Pointer math

Given a pointer to an address in memory, you can calculate other addresses. Big deal. What is
kind of nice is that C takes into account the size of the data the pointer refers to and scales the
arithmetic accordingly.

In this example, all the pointers are pointing at the same starting address, but the additions refer to
different bytes.
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Figure 2.3  Pointer Math

The same sequence of (random) bytes are interpreted with different pointers.

Assume that lp, sp, and cp start off with the same value, 0x100. When you do something like sp
+ 3, the address (sp + (3 * sizeof(pointer-base-type))) is calculated. In the case of a short
pointer (where a short is two bytes), sp is 0x100, sp + 1 is 0x102, sp + 2 is 0x104, and so on.

If lp is a long pointer, lp is 0x100, lp + 1 is 0x104, lp + 2 is 0x108, and so on

You dereference (fetch the value of) a pointer that is being added to like this:

        long longval = *(lp + 5);

Which works like this:

Table 2.1. Play-by-play

Code Behavior

lp + 5 Start with a base address of lp (0x100). Scale 5 by the sizeof(long) so
that you get 20 (hex 14).

Add them together to get 0x114. This becomes a a temporary postcard
with 0x114 written on it.

*: Go to address 0x114, and fetch a long's worth of bytes (in this case, it
would be 0x0b0e421f)

longval = Copy the value 0x0b0e421f into longval

Since ++ is the same as adding 1, it too gets scaled by the size of the type.

If you had a loop like this:

long *lp = 0x100;
for (i = 0; i < 5; i++) {
    printf ("%d: %x\n", i, *lp);
    lp++;
}

You would get output like this:
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0: 0x055fa211
1: 0x9267e232
2: 0xdd2342ff
3: 0x1e00feed
4: 0xfaceabad

For comparison, here it is with a short (2 bytes) pointer:

short *sp = 0x100;
for (i = 0; i < 5; i++) {
    printf ("%d: %x\n", i, *sp);
    sp++;
}

0: 0x055f
1: 0xa211
2: 0x9267
3: 0xe232
4: 0xdd23

And for completeness, with a char (1 byte) pointer:

char *cp = 0x100;

for (i = 0; i < 5; i++) {
    printf ("%d: %x\n", i, *cp);
    cp++;
}

0: 0x05
1: 0x5f
2: 0xa2
3: 0x11
4: 0x92

It is the same data in memory, the same starting address, just different pointer types.

The NULL pointer

The NULL pointer, having a zero value, is what you use to say, “This pointer points to nowhere.”
It is a handy initialization value, which happens automatically for global and static variables. In
general, trying to dereference a NULL pointer will crash your program.

Structures

Declaring structures

Structures are C's way of aggregating a bunch of different pieces of data under one name (like a
table definition in SQL). For instance:

struct Person {
    char   *name;
    int     age;
    char    gender; // use 'm', 'f'
    double  shoeSize;
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};

You can then declare instances of Person like this:

struct Person perfectMate;

and set/read the structure field members like this:

perfectMate.name = "Brenda";
perfectMate.age = 23;
perfectMate.gender = 'f';
perfectMate.shoeSize = 8.5;

printf ("my perfect mate is named %s, and is %d years old\n",
        perfectMate.name, perfectMate.age);

Use a dot between the name of the variable and the name of the field to use.

The layout of the structure in memory looks like this:

Figure 2.4  Structure Layout

The elements in the structure are laid down in the order they are declared. Note the three bytes
that are X'd out. The compiler puts in padding bytes so that types are aligned on byte boundaries
that maximize accessing performance. shoeSize, being a double, is on a 4-byte boundary. If
it were closely packed in against the gender byte the CPU would have to do multiple fetches
and assemble the data every time it was needed (this is much slower than if it is aligned and the
processor can grab it all at once).

One thing to notice is the declaration of name. It is char *name. This tells the compiler to leave
space for a postcard to find the actual name. The name itself will not be stored in the struct, it will
just be referenced elsewhere.

Pointers to structs

sstructs and pointers are often used together. structs can become arbitrarily large, so passing
them by value (copying all the bytes) can become expensive. Also, it is pretty common to have a
function fill in the members of a structure. Pointers come to the rescue here again.

Example 2.4. struct-point.c

// struct-point.c -- some structure, pointer stuff

/* compile with:
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cc -g -Wall -o struct-point struct-point.c
*/

#include <stdio.h>        // for printf()

struct Person {
    char   *name;
    int     age;
    char    gender; // use 'm', 'f'
    double  shoeSize;
};

void populatePerson (struct Person *person)
{
    person->name = "Bork";
    person->age = 34;
    person->gender = 'm';
    person->shoeSize = 10.5;
} // populatePerson

void printPerson (struct Person *person)
{
    printf ("name:      %s\n", person->name);
    printf ("age:       %d\n", person->age);
    printf ("gender:    %s\n", 
            (person->gender == 'm') ? "male" : "female");
    printf ("shoe size: %f\n", person->shoeSize);
} // printPerson

int main (int argc, char *argv[])
{
    struct Person me;

    populatePerson (&me);
    printPerson (&me);

    return (0);

} // main

The output

$ ./struct-point
name:      Bork
age:       34
gender:    male
shoe size: 10.500000

Rather than using a dot to separate a variable from the field you are referencing, you use the cool-
looking arrow operator: -> (minus + greater than) An expression like person->name is a shorthand
for (*person).name.

One very powerful feature of pointers to structs is that you can employ more interesting data
structures like linked lists and trees. The nodes of your data structure can refer to each other via
pointers.

Bitfields
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C lets you specify bit layout for individual fields in a struct.

A struct like this:

struct PackedPerson {
    char *name;
    unsigned int age : 7;              // enough to hold 127 years
    unsigned int isFemale : 1;         // set if female, clear if male
    unsigned int shoeSize : 4;         // support up to a size 15
    unsigned int padding : 2;          // add breathing room for BigFoot
    unsigned int shoeSizeFraction : 1; // set if this is a half-size
}

would have a memory layout like this:

Figure 2.5  Packed Structure Layout

struct PackedPerson only takes 6 bytes of storage (vs 20 bytes for just a regular struct Person)
The access time for the bitfields will be slower since the compiler is generating shifting and
masking instructions to pack and unpack the data.

Of course, you can use masks and bitwise operators to do this stuff manually, but sometimes these
bitfields can be more convenient.

Typedef

Up in struct-point.c, every time you reference the struct Person structure in parameter lists
and variable declarations you have to include the struct keyword. That can get pretty annoying
pretty quickly. C allows you to associate an alias name that is easier to deal with, using the
typedef facility:

struct Person {
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    char   *name;
    int     age;
    char    gender; // use 'm', 'f'
    double  shoeSize;
};

typedef struct Person Person;

Now you can use just Person everywhere:

void populatePerson (Person *person);
void printPerson (Person *person);
...
    Person me;

And given C's love for brevity, you can combine those two:

typedef struct Person {
    ...
} Person;

Casts

A cast is an operation where you tell the compiler to override the default interpretation of a
particular variable. You can use casts to tell the compiler to treat an int value as if it were floating
point:

int thing = 5;
float blah = (float) thing + 3.1415;

Here the compiler will convert thing to a floating point value before adding. (The compiler will do
this anyway, but you can use the explicit cast to tell the reader what is going on.) Casts can also be
used to go between signed and unsigned values. It is a way of telling the compiler, “Hey, I know
what I am doing. Go ahead and reinterpret the bits.”

Casts are also used to convert between pointer types.

You can have something like this:

unsigned char *bytePointer = ....;

You have a pointer to a sequence of bytes:

int blah = *((int *)bytePointer);

The (int *)bytePointer cast tells the compiler to treat bytePointer as if it were a pointer to
ints rather than a pointer to chars. So, when you dereference *((int *)bytePointer), you will
be picking up an int's worth of bytes. If you just did *bytePointer, you would only pick up one
byte's worth.

Similarly you can use casts on structure pointers:

int *blah = ....; // a pointer somewhere
Person *person = (Person *)blah;

now blah and person both point to the same address. You can now do things like
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printf ("name is %s\n", person->name); and it will pick up the bytes that started where
blah pointed. In most cases this would probably crash your program by interpreting the bytes in
a nonsensical manner, but the compiler lets you do this since it trusts that you know what you are
doing.

void *

There are times when you want to say, “Here is a pointer to something. I do not really care what
it is, it is just an address in memory.” The return values from dynamic memory functions are like
this. The C type void * is what indicates a pointer-to-anything. When you get a void *, you
typically assign it to a pointer variable of a particular type and then manipulate it, or you cast it to
the type you want.

Function pointers

You can have pointers to code as well as pointers to data. This allows a degree of abstraction by
allowing functions to act generically and delegate their work to another function. You can do
object-oriented programming in C (polymorphism and dynamic dispatch) using function pointers.

The syntax for declaring function pointers is a bit odd:

void (*pointer1)(int, int);

which means a pointer to a function that takes two ints and returns nothing.

int (*pointer2)(void);

is a pointer to a function that takes no arguments and returns an integer.

You invoke a function by something like this:

(pointer1)(5, 5);

or

int myvar = (pointer2)();

In fact, the parentheses can be omitted too. I like leaving them in that it makes it obvious that a
function pointer is being used rather than an explicit function.

This little program invokes a function to print out an integer via a function pointer.

Example 2.5. function-pointer.c

// function-pointer.c -- play with function pointers

/* compile with:
cc -g -Wall -o function-pointer function-pointer.c
*/

#include <stdio.h>        // for printf()

void printAsChar (int value)
{
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    printf ("%d as a char is '%c'\n", value, value);
} // printAsChar

void printAsInt (int value)
{
    printf ("%d as an int is '%d'\n", value, value);
} // printAsInt

void printAsHex (int value)
{
    printf ("%d as hex is '0x%x'\n", value, value);
} // printAsHex

void printIt (int value, void (*printingFunction)(int))
{
    (printingFunction)(value);
} // printIt

int main (int argc, char *argv[])
{
    int value = 35;
    
    printIt (value, printAsChar);
    printIt (value, printAsInt);
    printIt (value, printAsHex);
    return (0);

} // main

The program in action:

$ ./function-pointer
35 as a char is '#'
35 as an int is '35'
35 as hex is '0x23'

Unions

Unions are a way of interpreting the bits stored in a structure in two different ways.

Consider this:

typedef struct Person {
    char   *name;
    int     age;
    char    gender;    // use 'm', 'f'
    double  shoeSize;
} Person;

typedef struct Alien {
    char   *designation;
    char    bloodType; // use 'Q', 'X', or "@"
    int     hearts;
    short   psiPower;
    short   ducks;     // can be negative
} Alien;

enum { Human, NonHuman };
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typedef struct Individual {
    int type;
    union {
         Person person;
         Alien  alien;
    } indData;
} Individual;

The layout of Individual looks like this:

Figure 2.6  Layout of Individual Union

You can store an Alien's worth of data or a Person's worth of data in the same space, but not both
at the same time (you will need a second chunk of memory to do that). Unions let you overlay
storage like this in order to reduce type proliferation.

Referencing the fields of unions is verbose. You need to specify:

variableName.union-name.union-type-name.field;

To get the number of hearts for an alien, you need to do:

myAlien.indData.alien.hearts;

It looks like a lot of extra work to drill down into the union like that. There is not a run-time cost
for these, just wear and tear on your keyboard (some #defines can come in handy). Internally the
compiler calculates the offset from the beginning of the structure and fetches data from there.

Here is a program that uses this union. The type struct member tells folks who receive one of
these structures what type it is, so they know which side of the union to use.

Example 2.6. union.c

// union.c -- play with unions

/* compile with:
cc -g -Wall -o union union.c
*/

#include <stdio.h>        // for printf()

typedef struct Person {
    char   *name;
    int     age;
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    char    gender;    // use 'm', 'f'
    double  shoeSize;
} Person;

typedef struct Alien {
    char   *designation;
    char    bloodType; // use 'Q', 'X', or "@"
    int     hearts;
    short   psiPower;
    short   ducks;     // can be negative
} Alien;

enum { Human, NonHuman };

typedef struct Individual {
    int type;
    union {
         Person person;
         Alien  alien;
    } indData;
} Individual;

void fillAlien (Individual *individual)
{
    individual->type = NonHuman;
    individual->indData.alien.designation = "qwzzk";
    individual->indData.alien.bloodType = 'X';
    individual->indData.alien.hearts = 7;
    individual->indData.alien.psiPower = 2870;
    individual->indData.alien.ducks = 3;
} // fillAlien

void fillPerson (Individual *individual)
{
    individual->type = Human;
    individual->indData.person.name = "Bork";
    individual->indData.person.age = 34;
    individual->indData.person.gender = 'm';
    individual->indData.person.shoeSize = 10.5;
} // fillPerson

void printIndividual (Individual *individual)
{
    if (individual->type == Human) {
        printf ("Human:\n");
        printf ("  name:     %s\n", individual->indData.person.name);
        printf ("  age:      %d\n", individual->indData.person.age);
        printf ("  gender:   %c\n", individual->indData.person.gender);
        printf ("  shoeSize: %f\n", individual->indData.person.shoeSize);
        
    } else if (individual->type == NonHuman) {
        printf ("NonHuman:\n");
        
        printf ("  designation: %s\n", 
                individual->indData.alien.designation);
        printf ("  bloodType:   %c\n", 
                individual->indData.alien.bloodType);
        printf ("  hearts:      %d\n", 
                individual->indData.alien.hearts);
        printf ("  psiPower:    %d\n", 
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                individual->indData.alien.psiPower);
        printf ("  ducks:       %d\n", 
                individual->indData.alien.ducks);

    } else {
        printf ("oops, bad union qualifier\n");
    }
} // printIndividual

int main (int argc, char *argv[])
{
    Individual being;

    fillAlien (&being);
    printIndividual (&being);

    fillPerson (&being);
    printIndividual (&being);

    return (0);

} // main

Arrays
The last stop on the tour are arrays. Arrays are ordered collections of data of a uniform type, and
are similar to arrays in other languages like Java and Pascal.

You can declare an array like this:

int intArray[20];

This makes an array of 20 elements. You index the array to read and write values like this:

intArray[2] = 20;
int intVal = intArray[6];

Like all variables, if an array is declared in a function, it will have random values. Global
(non-static and not declared in a function) or static arrays will be initialized to all zeros.

This is how an array looks in memory:

Figure 2.7  Array in Memory

Look familiar? Here is another way to look at it:
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Figure 2.8  Array as a Pointer

Arrays have a very close relationship with pointers. In general, you can index a pointer with
square brackets (just like an array), and you can do pointer math on an array. In fact, pointers are
how arrays get passed to functions.

Consider this program, where arrays get passed to the printArray() function as a pointer, and
indexed as an array:

Example 2.7. array-parameter.c

// array-parameter.c

/* compile with:
cc -g -Wall -o array-parameter array-parameter.c
*/

#include <stdio.h>     // for printf()

void printArray (int *array, int length)
{
    int i;

    for (i = 0; i < length; i++) {
        printf ("%d: %d\n", i, array[i]);
    }

} // printArray

int main (int argc, char *argv[])
{
    int array1[5];
    int array2[] = { 23, 42, 55 };
    int i;

    for (i = 0; i < 5; i++) {
        array1[i] = i;
    }

    printf ("array 1:\n");
    printArray (array1, 5);

    printf ("array 2:\n");
    printArray (array2, sizeof(array2) / sizeof(int));
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    return (0);

} // main

A sample run:

$ ./array-parameter
array 1:
0: 0
1: 1
2: 2
3: 3
4: 4
array 2:
0: 23
1: 42
2: 55

One thing of interest is the bulk initialization of array2. Since there are three elements in that
initialization list, the length of array2 is that of three ints , or 12 bytes (3 * 4 = 12). Look at
the technique used to calculate the number of elements in the array by dividing the total size
(via sizeof) by the sizeof a single element. This comes in handy when you have tables of stuff
defined in your code.

Another thing to note is that the printArray() function needs to take a length (or you need to
stick some sentinel value) so that the loop knows when to stop. There is no length information
encoded in the pointer or array. That is why there exist functions like strlen() that have to count
characters in a string.

A logical question is, “If that is the case, how come you could do that sizeof(array2) /
sizeof(int) thing?” Recall that sizeof is a compile-time directive. The compiler knows that
array2 has three members because of the initialization list. The function printArray() cannot
know that since it does not know at compile time which array it is going to be given.

Arrays of pointers
If you've been following along, you've probably noticed a couple dozen of these:

int main (int argc, char *argv[])

Look at the last argument: what is that?

Here it is taken apart:

argv[]: argv is an array of undetermined length
char *: of character pointers.
In other words, argv[] is an array of postcards, and on the postcards are the locations of C strings
(zero-terminated sequences of characters). This array (argv, for “argument vector”) is the set of
program arguments given to the program. argc (argument count) is the number of elements in
argv.

For a program started like

$ myProgram -fish battery -jo2y fund blah.c

the resulting argv array looks like this:
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Figure 2.9  argv

Because of the equivalence of arrays and pointers (they are not identical, but the differences
between them are subtle), the declaration for main() can also be written as

int main (int argc, char **argv)

For the More Curious: Data Structures Using
Pointers
structs and pointer to structs can be used to build powerful data structures. One of the simpler
ones is a binary search tree. Each node of the tree holds a value and a pair of pointers to other
nodes. New values less than the value contained in the node get put into the left fork, otherwise
they go onto the right fork. If someone is already living on a particular side of the fork, you look at
that node and try to place the new value accordingly.

Here is a program that puts some values into a tree, then looks to see if particular values can be
found.

Example 2.8. tree.c

// tree.c -- use structs and pointers to build a tree of nodes

/* compile with:
cc -g -Wall -o tree tree.c
*/

#include <stdio.h>        // for printf()
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#include <stdlib.h>       // for malloc()

typedef struct TreeNode {
    int value;
    struct TreeNode *left;
    struct TreeNode *right;
} TreeNode;

void addValue (TreeNode *node, int value)
{
    if (value < node->value) {
        // left side
        if (node->left == NULL) {
            TreeNode *newNode = malloc (sizeof(TreeNode));
            newNode->value = value;
            newNode->left = newNode->right = NULL;
            node->left = newNode;
        } else {
            addValue (node->left, value);
        }
    } else {
        // right side
        if (node->right == NULL) {
            TreeNode *newNode = malloc (sizeof(TreeNode));
            newNode->value = value;
            newNode->left = newNode->right = NULL;
            node->right = newNode;
        } else {
            addValue (node->right, value);
        }
    }
} // addValue

#define TRUE 1
#define FALSE 0

int findValue (TreeNode *node, int value)
{
    if (node == NULL) {
        return (FALSE);
    } else if (node->value == value) {
        return (TRUE);
    } else {
        if (value < node->value) {
            return (findValue(node->left, value));
        } else {
            return (findValue(node->right, value));
        }
    }
} // findValue

int main (int argc, char *argv[])
{
    TreeNode root;

    // put 23 in manually to bootstrap the tree
    root.value = 23;
    root.left = root.right = NULL;
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    // now add some stuff

    addValue (&root, 5);
    addValue (&root, 50);
    addValue (&root, 8);
    addValue (&root, 2);
    addValue (&root, 34);

    if (findValue(&root, 23)) {
        printf ("23 lives in the tree\n");
    } else {
        printf ("23 does not live in the tree\n");
    }

    if (findValue(&root, 42)) {
        printf ("42 lives in the tree\n");
    } else {
        printf ("42 does not live in the tree\n");
    }
    return (0);

} // main

A sample run:

$ ./tree
23 lives in the tree
42 does not live in the tree

After the tree is built, it would look something like this in memory:

Figure 2.10  Binary Search Tree

The most interesting part of the code is the declaration of the tree node:

typedef struct TreeNode {
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    int value;
    struct TreeNode *left;
    struct TreeNode *right;
} TreeNode;

You cannot reference the TreeNode typedef while you are declaring it, but you can reference
struct TreeNode.

The other interesting thing is the use of dynamic memory allocation:

    TreeNode *newNode = malloc (sizeof(TreeNode));

This allocates a chunk of memory the size of a TreeNode (12 bytes) and gives you a pointer to it.
This allows the tree to grow arbitrarily large.

Challenge:
Add a function to tree.c to print out the tree.
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