
Hiring Millennial Students as Software Engineers
A Study in Developing Self-Confidence and Marketable Skills

Scott Heggen
Berea College

Berea, Kentucky
heggens@berea.edu

Cody Myers
Berea College

Berea, Kentucky
myersco@berea.edu

ABSTRACT
Software engineering courses and internships aim to equip stu-
dents with skills that are vital in the software engineering industry.
Millennial students are expected to emerge from an undergraduate
education ready to step directly into software developer positions
and succeed. And yet, for a variety of reasons, these experiences
often fail to adequately prepare students for the ambiguity of in-
dustry. The capabilities of a typical undergraduate simply do not
align well with the expectations of the industry, resulting in dis-
appointed employers, unhappy employees, and a poor reputation
for the quality of a higher education in software engineering. This
paper describes the Student Software Developers Program, where
students are developing real-world applications that solve business
needs at various departments on campus, leveraging those depart-
ments as customers. Students are immersed in the program for a
full year, providing them with adequate time to experience both
the depth and breadth of skills desired by the curriculum and by
industry. Our evaluation shows the program provided students with
confidence in their engineering abilities, a wealth of hard and soft
skills valuable in industry, all while learning software engineering
in a way that aligns with the values of their generation.

CCS CONCEPTS
• Social and professional topics→ Software engineering edu-
cation; • Software and its engineering→Designing software;
Software development process management; Programming teams;

KEYWORDS
Software Engineering Education, Agile, Software Development
ACM Reference Format:
Scott Heggen and Cody Myers. 2018. Hiring Millennial Students as Software
Engineers: A Study in Developing Self-Confidence and Marketable Skills.
In Proceedings of ACM Software Engineering Education for Millennials (SEEM
2018). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Undergraduate software engineering courses often have high expec-
tations of what they want to accomplish. Typically, the development

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEEM 2018, June 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of a software project is expected. In addition, instructors want stu-
dents to experience what it’s like working in a software engineering
team, following software engineering best practices, and develop-
ing good documentation and coding practices. Depending on the
project, students may also need to learn supporting skills (i.e., mar-
ketable skills) like version control, new programming languages,
and new libraries or APIs. Lastly, software engineering courses
are also a useful place in a curriculum to teach soft skills, such as
communication within a team, communication with a customer,
requirements gathering, and resolving conflicts [21]. For a single
course in a college or university setting, getting students to deeply
engage in all of these subjects at a rigorous level is challenging, if
not impossible.

An instructor also has the difficult task of choosing projects.
Letting the students pick their own project gives them a great sense
of ownership and pride in their product, but the projects are usually
poorly defined, have no real-world stake, no customer to provide
requirements or feedback, or are scaled back significantly to be
completed in the allotted time. Working with outside businesses
or non-profit organizations provides real stake in the project, as
a company is depending on the students to complete the project,
but comes with the additional challenges of coordinating with the
representatives of the company, gathering requirements in a for-
eign context, and facing challenges with customers who have little
or no technical expertise. These projects often end with a rough
prototype, but not a real final product that is usable by the customer,
leaving them unsatisfied. Other courses may leverage open source
projects, which typically have real-world stake, low negative im-
pact if they are not successful, and rigorous requirements for the
students to follow. However, these projects are often supported by
volunteer developers in the open source community who support
the software as a hobby, making them poor collaborators or cus-
tomers. Students can also select issues and features beyond their
capabilities. The projects can have difficult or inaccurate installa-
tion and usage instructions. Worst of all, the community around
the software can be an unwelcoming or even toxic on-line envi-
ronment for novice programmers, driving away students with less
self-confidence. Selecting open source projects requires caution
taken by the instructor. In short, all software engineering projects
come with pros and cons, and constraints that limit the course to a
subset of the learning goals desired by the instructor.

Shaw [20] indicates three challenges in the design of a software
engineering curriculum. First, there must be well-defined roles for
all members of the team, similar to how roles are separated in the
software engineering industry. As Shaw notes, “Available knowl-
edge about software development far exceeds what any one person
can know.” The result is depth in a single software engineering role,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SEEM 2018, June 2018, Gothenburg, Sweden Scott Heggen and Cody Myers

but a deficiency in other roles. Second, Shaw claims that software
education needs to be a long-term investment. A single course is
simply not enough time to fully engage in software engineering.
Third, Shaw notes that specialization training to develop mastery in
a subject area within software engineering results in opportunities
for the students. Again, specialized training takes time. Industry of-
ten takes on this burden by training new employees in their first few
weeks, due to academia failing to provide them with the specific,
necessary skills [4].

Sometimes software engineering learning is pushed outside the
classroom, such as through internships, research experiences for
undergraduates (REU’s), or co-ops. While some of these experiences
are stellar for students, others return to campus with mixed reviews.
Some feel defeated or overwhelmed by the work they were assigned,
while others may feel underutilized by the organization. Some
have bad experiences because of inexperienced supervisors. Other
students aren’t able to secure an internship at all, while others
can’t afford to not make money or move to a new city, and end
up wasting valuable learning time during a summer working jobs
to make ends meet. In all, internships are a gamble for students,
and are not a reliable source for gaining skills that align with a
computer science or software engineering program’s curriculum.

This paper describes a program which blends the best parts of a
software engineering course and an external experience like intern-
ships. Through our work-study program, students are employed by
the computer science department to develop software for a full year.
Students start in the summer, working approximately 400 hours
under the supervision of a faculty member, where they are trained
on the software engineering principles described above. In addition,
they begin developing their first software system. The projects are
proposed by the campus community (a.k.a. the customer) and are se-
lected by the supervising faculty member. These projects are often
tools requested by the customer to help them complete their daily
work, thus, the software becomes an integral part of the customer’s
job. Students finish the beta version of the product by the end of
summer. During the remainder of the academic year, the students
work an additional 300 or more hours, where they maintain the
software, including implementing new feature requests, fixing bugs,
and performing customer support.

The remainder of this paper is organized as follows: the Related
Work section describes research that influenced our program. Next,
the software projects and the process created by students in the
program are discussed. Next, an evaluation of the program is pre-
sented in the Results section. We conclude with future work and
closing thoughts on the effectiveness of the program.

2 RELATEDWORK
Interacting with millennials, those born after 1980 [14], has chal-
lenged instructors, particularly those from other generations, to
adapt their teaching styles. According to Partridge et al. [15], the
millennial generation can be characterized by the following traits:
they place value on building strong relationships; prefer close-knit
communities; are socially-responsible and aware; view their par-
ents as friends more than authority figures; enjoy teamwork; bring
a mentality of “leave no one behind"; are pragmatic but optimistic;
and probably most relevant, they are a generation that has always

had digital technology as part of their lives, and see it as an essential
part of their daily living. The millennial generation is also charac-
terized as a protected generation, who are used to structure in every
aspect of their lives. They are not known for handling ambiguity
well, lean heavily on mentors, and are considered materialistically
spoiled, particularly with regard to technology. Boredom is their
worst fear.

When you imagine your typical course in college, you might
envision an instructor lecturing to a class; not exactly your most
engaging, active environment. In fact, Freeman et al. [7] showed
that lecturing results in 1.5x more students failing a course than
through the use of active learning. This is not the only difference
an instructor might notice as they interact with millennial students.
Partridge et al. [15] notes that millennials learn best when they
are recognized as individuals; have a voice in class decisions; are
able to establish a rapport with instructors; have group interac-
tions; use class time as a social and educational experience; have
a non-judgmental sounding board; are not passive recipients of
information; are engaged to retain information; are given a variety
of learning experiences; are given course work that is relevant to
the real world; are learning marketable skills; and are engaged with
current information.

In software engineering courses specifically, educators who are
keyed into understanding how millennials learn have discovered
that there are better ways of teaching than purely lecturing. Razmov
and Anderson [17] incorporated modern technology such as tablets
into the delivery of course materials and found that it resonated well
with students who are already very comfortable with technology.
Gannod et al. [8] followed a flipped classroom approach, driving
the theoretical learning out of the classroom and focusing that time
on active development of a project. Liu’s [12] approach engaged
students with real-world projects through service-learning and
contributions to open source projects. Numerous other examples
exist of active learning being used to improve the way millennial
students are learning software engineering beyond the traditional
lecture.

Although curricula are becoming more engaging, software engi-
neering as a discipline is broad and requires many skills. Accord-
ing to Shaw [20], ". . . design, management, programming, valida-
tion, analysis, user studies, documentation, system integration, and
property-specific techniques such as design for security and reli-
ability" are all key principles in software engineering. However,
it is inconceivable to expect students to develop all of these skills
within a single course. Therefore, the curriculum relies on teaching
". . . essential, durable content that will serve the student for several
decades" [20], meaning scalable knowledge will consistently be fa-
vored over immediate learning such as current industry standards
(i.e., marketable skills). As a result, marketable skills such as Agile
[3], lean in software development [16], and version control tools, to
name a few, are omitted from the course, and are left in the hands
of the students to learn through their own curiosity. Shaw [20] says
it best when she states, “Curriculum design is at heart a resource
allocation problem, with curriculum space (as measured by courses,
hours of study, number of homework problems and projects, etc.)
as the scarce resource."

Naturally, students seek out these marketable skills outside of the
classroom, such as through internships. As Schambach and Dirks

Hiring Millennial Students as Software Engineers SEEM 2018, June 2018, Gothenburg, Sweden

note [18], internships can provide numerous potential benefits to
students, such as reinforcing conceptual learning; establishing self-
confidence; an increase in marketable job skills; improving their
ability to problem solve in an environment where defining the
problem is an essential part of the job; revealing the importance of
soft skills such as social interactions; effective communication; and
teamwork. Because internships are competitive, students that are
further in their education are more likely to get these experiences.
Furthermore, the majority of internships are offered during the
summer, meaning these experiences are typically short. Tvedt et
al. [23] summarize the major pitfall of internships well when they
say, “[An internship] does not provide the depth of experience to
appreciate the responsibilities of the roles and the implications of
their decisions on future development. Nor, do the students have the
opportunity to learn from their mistakes and apply their experience
to future projects."

Both Martincic [13] and Keogh et al. [9] present multi-semester
experiences, blending software engineering courses with industry-
sponsored internships. Their studies showed deep software engi-
neering and soft skill development by the students. However, the
logistics of such programs proved one of the more challenging as-
pects of these programs, particularly in coordinating with multiple
industry collaborators. Our Student Software Developers Program
most closely aligns with these two works, with a few exceptions
which we will cover in the next section.

3 METHODOLOGY
This section describes the Student Software Development Program.
First, the software projects and their unique purpose are described.
Then, the structure of the program, framed around the software
engineering learning goals, are presented.

3.1 Software Projects
The software projects developed by our students are all custom web
applications that provide technical solutions to problems unique to
our institution. For example, at our institution every student must
participate in a work-study program known as the Labor Program,
where they are employed by the college for 10 to 15 hours per week
to do the work of the college. Students get jobs in every depart-
ment on campus, frommaintaining the grounds to writing software,
such as the students who are participating in the Student Software
Development Program. To hire all of these students, the labor de-
partment was using an antiquated paper-based process, typically
requiring students to walk around campus obtaining signatures
from multiple supervisors and academic advisors. The Student Soft-
ware Developers team created a custom web application to replace
this process, eliminating time wasted by students chasing down
signatures from labor supervisors, significantly reducing rework
by eliminating errors from the paper-based form, and removing
paper waste from the campus. The software is used by every labor
supervisor (nearly every staff and faculty member) to hire new
students, as well as manage many other aspects of their labor po-
sition (such as releasing students from their position or making
corrections). Our software is fully in production and is the primary
tool supervisors use for managing their student labor.

All of our application requests follow a similar process: a de-
partment on campus identifies an inefficient process within their
department, they discuss their challenges with the student software
developers, and determine if custom software will reduce or elimi-
nate that burden. The student developers then design, develop, and
deploy the application for live use. We also manage the software for
as long as it is being used, providing technical support and continu-
ally upgrading the software as new features are requested, bugs in
the software are discovered, and new processes are implemented.

The program began 3 1/2 years ago, and we have since worked on
nine other systems like the one described above. Space limitations
prevent describing all ten systems. However, we briefly describe
the Course Administration and Scheduling (CAS) system to demon-
strate one more application which has a significant impact on the
campus community.

3.1.1 The Course Administration and Scheduling (CAS) System.
At roughly 1600 students, our institution runs about 550 courses
per term. The scheduling of classes and selection of rooms has been
a challenge for the Registrar. Using the old process, the Registrar’s
Office would email all department chairs requesting schedules with
instructor, date, and time information entered into a spreadsheet.
Each department chair would enter their courses into the spread-
sheet then send it back to the Registrar’s Office, who would transfer
each department’s spreadsheet into a master spreadsheet. This
process would repeat each week as the master schedule changed,
allowing department chairs to identify conflicts in the schedule (i.e.,
conflicts between two required classes in a major, but in different
departments, such as a math requirement for a computer science
major). Once the master schedule is set, the process repeats for
room assignments. Conflicts arose when multiple faculty needed a
particular room, and the Registrar’s Office would make the changes
and resend the spreadsheet to the community for further feedback.

The old process took roughly 70 hours for the Registrar’s Office
staff to do data manipulation, plus over four weeks of back-and-
forth emailing of spreadsheets between department chairs and the
Registrar. Worse yet, this process resulted in numerous errors as
spreadsheets were lost, data entry or data migrations were done in-
correctly, spreadsheet versions became out of order, emails weren’t
sent in a timely manner, and a multitude of other potential pitfalls.

The Registrar’s Office approached the team about developing
software to aid in solving the aforementioned challenges. The first
version of the software was developed in a summer by two students
(one sophomore and one junior), and deployed in the following term
as a beta product. The original software provided an interface for
department chairs to enter course information. All members of the
faculty were able to view the entire schedule as it was being built,
allowing department chairs greater visibility into the schedules of
other departments. The improved visibility reduced the number of
scheduling errors and fixes, as each department was responsible
for their own data entry. The system improved the collaboration
between departments in scheduling courses that should not run at
the same time. Furthermore, it exported cleanly into the college’s
system for managing the official schedule (this tool was intended
as a planning tool only). The new process eliminated the 70 hours
required by the Registrar’s Office staff in data manipulation en-
tirely. While department chairs did not report a savings in time

SEEM 2018, June 2018, Gothenburg, Sweden Scott Heggen and Cody Myers

on task, they reported clearer visibility in the schedule as it was
being developed. Most importantly, it eliminated nearly all errors
in scheduling caused by the Registrar’s Office.

Subsequent versions of the CAS software added new features
which have further improved the utility of the system. The system
is now capable of assisting the Registrar in scheduling rooms, as it
clearly highlights conflicts for each room. The Registrar can also
manage terms, manage users, and manage new course catalog en-
tries and special topics courses (student programmers were directly
inserting them into the database in earlier versions).

3.2 Software Engineering Process and Learning
Goals

Part of the success of Martincic [13] and Keogh et al. [9] was the
immersive nature of their programs; students actively participated
in software engineering for more than a single semester. The Stu-
dent Software Developers Program takes a similar approach, but
breaks their time into two phases: the summer term, where the
students work 40 hours per week for 10 weeks, and the academic
term, where the students work 10 to 15 hours per week for the
entire academic year. This provides the students with a minimum
of 700 hours over the course of the year engaging with software
engineering principles. Through the college’s Labor Program, the
students are paid an hourly rate for their time.

The summer term is dedicated to the design, prototyping, test-
ing, and deploying of the first version of a system. Using Scrum
principles [19], the team breaks down the summer into a series
of weekly sprints. The students rotate roles (e.g., scrum master,
database engineer, front-end developer, etc.), allowing them to ex-
perience multiple software engineering roles. As they begin coding,
the students practice pair programming [24] to meet the goals of
each sprint, giving them the opportunity to develop good team
practices and leverage each other for questions as problems arise.
Lastly, we employ just-in-time teaching to give the students the
skills they need at the moment they need it. For example, when the
students are beginning to think about the interactions between their
front-end user interface, the back-end database, and the controller
that connects them, we launch into a discussion about Model-View-
Controller (MVC) [10].

The next four sections describe the different phases of the Stu-
dent Software Developers Program. While we describe the phases
linearly and rigidly, they follow an Agile [11, 19] mentality, where
the students will rotate through each phase in short, typically one
week cycles, and naturally flow from one phase to another.

3.2.1 Initial Design Sprint. The process typically begins with
students meeting with their customer to gather requirements. The
students then engage in design thinking exercises. For example,
they map the customer’s requests to a set of features, by creating
a software requirements specification document and use case dia-
grams [6]. From these documents, the students can begin thinking
about the main user interfaces in the system, which is then paper
prototyped [22] in small teams. The paper prototypes are reviewed
by the entire team, extracting the best features from each group
into a final prototype design. The team then begins to think about
the data models that support their user interface, and build the
entity relationship models. Much of the first week in the design of

a system is not spent coding, but thinking about the system from a
user’s perspective, and determining the best way to implement it.

The team, led by the scrum master for that sprint, have daily
stand-up meetings for design reviews. In each meeting, the students
review each others’ most recent work. By actively questioning each
other’s design at each stage of the process, the students learn to
work as a team to identify the problems quickly, modify the design
early (before too much code has been written), and resolve design
flaws before they reach the customer. When a sprint comes to an
end, a new scrum master is chosen, and the students switch pair
programming partners. Guaranteeing that everyone’s voices and
ideas are incorporated into the design allows for each student to
gain ownership of the project and see the big picture goals. Students
see early on that the system will constantly change, helping them
realize that software engineering isn’t just about defining a prod-
uct then building it. Software engineering is much more organic,
allowing the system to evolve as design decisions are made.

3.2.2 Implementation Sprint. As implementation begins, the stu-
dents break down the design into issues inside of an issue tracker.
The team meets, creates a sprint list, and decide on the most im-
portant features to work on for that sprint. The pair programming
teams then create self-imposed deadlines estimating their devel-
opment time, which helps them track their progress and learn to
estimate development time. Each workday during the sprint begins
with the scrum master asking three questions: what did you accom-
plish yesterday, what do you plan to accomplish today, and what
issues are you stuck on? These three questions create a culture
within the team that constant progress is expected, getting stuck on
a single problem for multiple days is discouraged, don’t feel inferior
for not being able to do something, and there’s no shame in asking
for help. Instead, getting stuck and asking for help early is actively
encouraged, and results in better productivity and learning overall.

The students follow git workflow [1] to create pull requests by
the end of each sprint. During the sprint review, the team will go
through each pull request, showing what was accomplished and
performing a team code review before merging code into a “devel-
opment” branch. After all of the pull requests have been merged
into development by the scrum master, the students spend a day on
team testing, where the students try to break each other’s code. This
testing phase emphasizes the importance of good coding practices,
such as input validation and sanitizing. After the team approves
the changes, the development branch is merged into the master
branch, thus ending the implementation sprint. The code is then
pulled into the production environment and considered live.

3.2.3 Design Checks. During implementation, any member of
the team can request a design check. These checks provide an op-
portunity for the team to step back and ensure that their current
design is still valid and meets the customer’s needs. The question
is either answered by the team, or the design is modified. For ex-
ample, students might discover the database needs restructuring
to handle relationships correctly. The team discusses, and if they
agree on a modification to the design, it is appended to the current
implementation sprint (if critical), or it is prioritized in a future
sprint.

Hiring Millennial Students as Software Engineers SEEM 2018, June 2018, Gothenburg, Sweden

3.2.4 Software Maintenance & Upgrades. During the academic
terms, our work-study program requires students to work for 10
to 15 hours per week in addition to their regular course load. The
new schedule shifts our focus from a development mindset to a
maintenance mindset. Duties include bug fixes, new minor features,
and general customer support. The benefit is students experience
the entire life-cycle of software development, particularly the later
stages of maintenance and upgrades, which students rarely see in
courses and internships (or worse, it’s the only thing they see in
their internship). Through working customer support, the students
learn how to debug those unique, fringe issues that only occur when
a system is in production. Additionally, having to develop new
features to a live system reveals the importance of a scalable design.
The value of good coding practices becomes apparent; they are
often looking at their peer’s code. If the team’s self-imposed coding
standards are not followed, or the software was not designed in a
manner that makes it easy for new upgrades, their own workload
and frustration levels increase. A culture of properly structuring
code, providing good documentation, commenting, and testing
emerges, as students don’t want to spend their precious hours
debugging code because of poor implementations.

4 RESULTS
To evaluate the effectiveness of the Student Software Developers
Program, we issued a survey to all past and present students in
the program. The program has had a total of 22 participants; 16
completed the survey (73%). The newest students in the program
started in 2017, approximately nine months before the survey was
issued. The amount of time students spend in the program varies
from a single summer (originally, we allowed this; now, all students
are expected to work for a full year) to the most senior student being
in the program for 3 years now. All data was collected in January
2018. Table 1 summarizes the demographics of the 16 participants
in the study. All participants fall in the millennial age range, being
born after 1980.

Table 1: Demographics of the 16 students participating in
the Student Software Developers Program.

Demographic % of
Participants

Male 68.8%
Female 31.3%
White 43.8%
Asian 18.8%
Black 25.0%
Hispanic 12.5%

The survey aimed at capturing three metrics from the students:
their development of computer science and professional skills be-
fore and after the program; their self-confidence as computer sci-
entists; and their perceptions of the program and how well its
structure compares to the values of the millennial generation.

4.1 Software Engineering Skills
First, the survey asked the students to rate their abilities across
15 software engineering skills, summarized in Table 2. Based on
Bandura [2], a 0 to 100-point scale was used for self-reporting of
skills because it is a stronger predictor of performance, compared
to a typical Likert 5-point or 6-point scale. The students were asked
to rate themselves based on their self-perception prior to partici-
pating in the program. The students were then asked the same set
of questions, but in regard to their skills after having participated
in the program (or for those still in the program, rate their current
perception of their own skills). Their ratings of prior to and dur-
ing/after the program were not viewable at the same time as they
completed the survey.

As Table 2 shows, the results are extremely positive. A two-
sample paired t-test (alpha = 0.05) was performed on the data, and
on every skill, they rated their skills significantly higher during and
after the program compared to before joining the program. The
highest p-value reported by the students was for testing software,
but is still well within the alpha of 0.05. Our interpretation of these
results is rather straightforward: the students are gaining all of the
software engineering skills set forth by the program, and with great
success.

4.2 Marketable Hard and Soft Skills
The survey also asked students to report the top five hard skills they
learned in the program, and similar for soft skills. For hard skills,
their responses fell into three categories: Software engineering-
specific skills (e.g., requirements gathering, debugging, git, scrum,
agile, etc.); programming and markup languages (e.g., Python, C,
HTML, Javascript, SQL, etc.); and frameworks and APIs (e.g., Flask,
ASP.NET, Ruby on Rails, Ansible, etc.). Table 3 summarizes their re-
sponses. In all, the students reported 15 unique software engineering-
specific skills, and these skills were mentioned 30 times total. For
programming and markup languages, the students reported 10
unique languages, and these languages were mentioned 26 times
total. Lastly, 9 frameworks and APIs were reported, appearing 19
times in the students’ responses. The breadth of hard skills men-
tioned by the students (34 unique skills) coupled with the average
number of responses per skill (between 2.0 and 2.6 for all three
categories) indicates that the students were both learning lots of
skills, and multiple students were learning the same set of skills (i.e.,
students were learning about multiple software engineering roles).
Git (12 mentions), Javascript (9 mentions), and Flask (6 mentions)
were the three most mentioned hard skills learned.

For soft skills, their responses fell into four categories: project
management (e.g., writing issue queues, designing, time manage-
ment, etc.), teamwork and communication, professionalism (e.g.,
leadership, independent learning, working with ambiguity, seeing
the big picture, etc.), and client communication. Table 4 summarizes
the four categories and the student responses. Overall, the students
identified learning about 26 unique soft skills, with significant over-
lap within each category. For instance, every student mentioned
teamwork and communication as a soft skill learned in the program,
as well as at least one project management skill.

SEEM 2018, June 2018, Gothenburg, Sweden Scott Heggen and Cody Myers

Table 2: Summary of software engineering skills before and during/after participation. Each value is the average of all re-
sponses by students, on a scale of 0 (did not believe they could do at all) to 100 (had absolute confidence they could do).

Software Engineering Skill Before the Program During/After the Program p-valueAvg. St.D. Avg. St.D

Design a new software system: 38.1 25.6 88.9 11.8 5e-8
Create a new software from scratch 27.0 24.0 86.1 13.4 1e-9
Communicating with a customer: 47.2 26.3 92.5 9.3 4e-7
Capture a customer’s requirements: 56.9 30.3 93.1 7.9 7e-5
Document software requirements: 47.2 28.5 91.9 8.5 1e-6
Document a software’s structure with diagrams: 47.2 26.6 94.0 6.9 1e-7
Design software in a team: 53.8 16.0 93.2 10.0 2e-9
Develop software in a team: 51.6 16.0 92.8 11.9 7e-9
Test software: 43.1 25.7 79.6 20.7 1e-4
Fix a bug in a software system: 51.6 27.1 92.8 7.9 2e-6
Use version control, such as git: 35.6 38.4 92.3 12.8 4e-6
Push changes to a production environment: 29.9 34.4 86.9 18.5 2e-6
Lead a scrum meeting: 23.8 29.0 81.5 23.8 9e-7
Prioritize tasks related to software: 46.6 26.0 91.1 15.7 2e-6
Lead a team of software developers: 34.4 33.7 87.6 15.4 3e-6

Table 3: Summary of top hard skills categories learned as
reported by the students.

Hard Skill # unique
resp.

total
resp.

Avg. resp.
per skill

Software eng.-specific skills 15 30 2.0
Programming/markup lang. 10 26 2.6
Frameworks & APIs 9 19 2.1

Table 4: Summary of top soft skills categories learned as re-
ported by the students

Soft Skill # Resp.

Project Management 21
Teamwork and Communication 21
Professionalism 19
Client Communication 13

4.3 Confidence
The participants were then asked to respond to several different
questions about the program’s impact on their confidence. Confi-
dence in themselves as computer scientists is a salient metric be-
cause it affects a student’s “. . .motivation, interest, and achievement
towards specific tasks” [5]. Therefore, we first measured confidence
by asking the students to self-report how they felt prior to joining
the program. The question was intentionally made open-ended so
they had the freedom to answer in a way that suits their experi-
ence, without leading them to a positive (e.g., “I felt confident”) or
a negative (e.g., “I felt nervous”) response. Themes emerged as we
parsed their responses. First, the results revealed that 75% (12/16)
of the students felt they lacked the experience needed to develop

software systems prior to joining the program. Additionally, 63%
(10/16) of students were nervous about whether or not their current
skill level would allow them to make a meaningful contribution.
Conversely, only 25% (4/16) of the students indicated that they were
optimistic in their own abilities to develop software systems.

We also explicitly asked the students to compare themselves to
their peers to see if they felt they had more, less, or equivalent
software engineering experience than their peers in the program
with them. This metric revealed that 69% (11/16) of our students
felt they had less experience, 18% (3/16) percent felt that had an
equivalent experience, and only 6% (1/16) felt that had more experi-
ence than their peers. One student reported they were unaware of
their peer’s skills, which resulted in the student feeling unqualified
to answer the question. This clearly demonstrated that the majority
of students began the program with a lack of self-confidence in
their technical abilities.

To evaluate their confidence during and after participating in
the program, we look back at Table 2. The students indicated they
were least confident in their ability to perform testing at an average
rating of 79.6. However, 79.6 on a 100-point scale is by no means
a low rating in the authors’ opinions, and is statistically signifi-
cantly higher than their rating of 43.1 prior to joining the program
(p = .0001). Similarly, the second lowest skill is leading a scrum
meeting, rated on average at 81.5 during and after the program.
Compared to the 23.8 rating prior to the program (p = .0000009),
we are comfortable in saying that students are far more confident
in their leadership ability after participating in the program. The 13
other skills from Table 2 follow a similar trend. The students feel sig-
nificantly more confident in their software engineering capabilities
after participation in the program.

Digging deeper into the students’ comments, we see some quotes
that also indicate effectiveness in impacting confidence. For exam-
ple, one student stated that prior to the program, “I was super
nervous because I felt like I wasn’t ready [for the program]. I had

Hiring Millennial Students as Software Engineers SEEM 2018, June 2018, Gothenburg, Sweden

taken only three [computer science] classes and I wasn’t certain
what I was doing. I felt I wasn’t as qualified compared to my peers.
I always had an issue with doubting myself so I wasn’t surprised
that I felt this way.” However, after the student had participated
in the program for two years, we asked if the program helped pre-
pare them for their current job in industry. The student responded
with, “[The program] was my first actual software development
experience. This was my stepping stone to get other internships
and helped me a lot with my resume building. I am very grateful
that [I was given] this opportunity because I am certain this was
a huge reason I decided on this career path and the reason I was
able to get a job at Wall Street. I can explain how big of an impact
it had on my self esteem, academic life, and life in general.”

Another student admitted that, “. . . at the beginning I was feeling
a bit intimidated by my peers, and I thought my skills weren’t as
advanced as theirs. Being a freshman who has never had any real-
life experience of that kind I thought I am behind the rest. . . I was
a bit nervous about whether I’ll be able to learn all that I need to
learn, and whether or not I’ll be a valuable member of the team.”
After two years in the program, the student shared that, “I love
every part of this program. It was an extraordinary experience for
me, and it was one of the most important things in my life. It helped
me in many ways, and I think many things in my life wouldn’t be
possible without it. . . [The program] helped me get over the fear
that I won’t be able to learn, or I won’t be good enough. Right now
I feel prepared to take on any challenge they give me, believing in
myself and both my technical and non-technical skills.”

There are many more comments that reveal how the program
has impacted the students’ confidence. For the sake of space, here
are just a few: “Working in the program had given me enormous
experience, and stories to talk about confidently in job interview”
and “working in the program helped me be more comfortable with
working in a group, sharing my ideas, and not being afraid to even
suggest that someone might be wrong when I feel that they are. I
fully credit [the program] for my current [career] and for placing
me in an advantageous position in the pursuit of lifelong learning.”

4.4 Millennial Values
We were also interested in how well the Student Software Develop-
ers Program aligned with the values of the millennial generation.
Table 5 shows the eleven questions related to millennial values,
which are based on the list in Section 2 as defined by Partridge et al.
[15]. A high response (i.e., closest to 100) correlates to a value held
by millennials, while a low response (i.e., closest to 0) correlates to
a value not held by millennials.

The student responses were very promising; on average, students
rated above 85 out of 100 on every question, indicating the design
of the program aligned well with the way the students learned
best. Out of the 11 questions, six questions rated above 90. The
program is most adept at providing the students with work that
is relevant to the real world (rated 96.67). The other five metrics
over 90 worth mentioning: the program provides opportunity to
establish a rapport with their mentor (rated 93.1); the work was
engaging (rated 92.8); they got a variety of learning experiences
(92.5); and they learned marketable skill (91.9). Interestingly, the
students said they developed a rapport with their mentor(s) (93.1)

Table 5: Results of how the students felt during their time
as student programmers. Responses were on a scale of 0 (ab-
solutely not true) to 100 (absolutely true).

During your time as a student
programmer, did you feel you:

Avg.
Resp.

St.
Dev

were recognized as an individual. 88.6 16.1
had voice in decisions. 89.1 17.0
established a rapport with your mentor(s). 93.1 15.0
established a rapport with your peers. 88.3 17.9
had group interactions. 85.6 22.1
were engaged in your work. 92.8 11.4
got a variety of learning experiences. 92.5 9.5
did work that was relevant to the real world. 96.6 6.2
did work that was relevant to yourself. 91.6 12.1
learned marketable skills. 91.9 14.4
gained information that was current. 89.6 13.8

almost 5 points higher than they reported developing a rapport
with each other (88.3).

Overall, our interpretation of these results is that students feel
the Student Software Developers Program is providing them with
an experience that engages them in a way that aligns closely with
the values of the millennial generation.

4.5 Community Impact of the Software
While our primary goal of the Student Software Developers Pro-
gram is to provide students with an immersive, high impact program
for growing as software engineers, a secondary goal of the program
is to have an impact on the community through the software we
develop. In the 3 1/2 years the program has been running, we have
deployed and are maintaining eight applications, with two more in
development.

All of the systems are designed as tools to allow departments to
do their work, so we are most interested in estimating how much
time the software has saved the customers. To extract time savings,
we interviewed our customers asking them to report the number
of hours the new process has saved them. The sum of these time
savings translates to a conservative estimate of 2700 hours per
term of faculty, staff, and student time that is no longer spent on
inefficient, error prone, and antiquated processes. Put another way,
assuming the average salary of all faculty and staff and students
(who are all paid at our institution through our work study program)
is $25.00 an hour, the college is saving roughly $135,000 per year
because of our software. Both the estimate of hours and assumed
average salary are very conservative here; the actual cost savings
is certainly higher. However, we aren’t interested in exact values
in this work; these figures are presented merely give a sense of the
impact our systems are having on our campus community.

5 FUTUREWORK
The Student Software Developers Program is still relatively new.
Because we understand and value lean principles [16], we know the
program will continuously improve with each new student cohort.

SEEM 2018, June 2018, Gothenburg, Sweden Scott Heggen and Cody Myers

The students are encouraged to be actively involved in understand-
ing the larger process, and to have a voice in making decisions about
changes to the workflow. One example of this is how the team was
using git to manage versioning. The students were creating merge
conflicts due to poor branching practices. They researched and
implemented a new process to solve these merge issues, reducing
the number of merge conflicts dramatically. By empowering the
students to make changes to process and giving them a voice in the
direction of the program, we’ve created an environment where the
students are deeply invested in the success of the program. Since
the program’s inception, our processes have changed dramatically,
and will continue to do so because the students are given the tools
to identify their own inefficiencies and devise solutions to their
problems.

6 CONCLUSION
The Student Software Developers Program has provided students
with a new way of engaging with software engineering. Students
spend a minimum of one year in a work-study position developing
software that serves the needs of the campus community. The
software serves the community by providing departments with
the tools they need to conduct their daily business with greater
efficiency. The program serves the students by providing them with
the time and skills needed to fully understand the complexity of
software engineering. The students in the program, all from the
millennial generation, indicate the program engages them with
software engineering in a way that aligns well with their values
and beliefs. Furthermore, as the students progress through the
program, they are feeling significantly more confident in their
software engineering skills, gaining marketable skills, feeling more
confident in their soft skills, and feel like the work they are doing
is having a real-world impact.

ACKNOWLEDGMENTS
The authors would like to thank the entire Berea College com-
munity for their support in realizing this program. Through their
willingness to serve as our customers, providing feedback and pa-
tience, our students are able to develop software that has a real
impact in an environment that encourages them. Special thanks to
the Computer Science Department for their hands-on support, and
to Dr. Matt Jadud, who provided significant mentorship to students
early in the program.

REFERENCES
[1] Atlassian. 2018. GitflowWorkflow. (2018). Retrieved February 2, 2018 from https:

//www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
[2] Albert Bandura. 2006. Guide for constructing self-efficacy scales. Self-efficacy

beliefs of adolescents 5, 1 (2006), 307–337.
[3] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-

ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. Manifesto for agile software development. (2001).

[4] DJ Besemer, KS Decker, DW Politi, and JF Schnoor. 1989. A synergy of industrial
and academic education. In Issues in software engineering education. Springer,
399–413.

[5] Tebring Daly. 2011. Minimizing to maximize: an initial attempt at teaching
introductory programming using Alice. Journal of Computing Sciences in Colleges
26, 5 (2011), 23–30.

[6] Remco Matthijs Dijkman and Stephanus Maria Mathias Joosten. 2002. Deriving
use case diagrams from business process models. (2002).

[7] Scott Freeman, Sarah L Eddy, MilesMcDonough, Michelle K Smith, Nnadozie Oko-
roafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning increases

student performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences 111, 23 (2014), 8410–8415.

[8] Gerald C Gannod, Janet E Burge, andMichael T Helmick. 2008. Using the inverted
classroom to teach software engineering. In Proceedings of the 30th international
conference on Software engineering. ACM, 777–786.

[9] Kathleen Keogh, Leon Sterling, and Anne Therese Venables. 2007. A scalable and
portable structure or conducting successful year-long undergraduate software
team projects. Journal of Information Technology Education: Research 6 (2007),
515–540.

[10] Glenn E Krasner, Stephen T Pope, et al. 1988. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal of object
oriented programming 1, 3 (1988), 26–49.

[11] Guido Lang. 2017. Agile Learning: Sprinting Through the Semester. Information
Systems Education Journal 15, 3 (2017), 14.

[12] Chang Liu. 2005. Enriching software engineering courses with service-learning
projects and the open-source approach. In Proceedings of the 27th international
conference on Software engineering. ACM, 613–614.

[13] Cynthia J Martincic. 2009. Combining real-world internships with software
development courses. Information Systems Education Journal 7, 33 (2009), 1–10.

[14] Eddy SW Ng, Linda Schweitzer, and Sean T Lyons. 2010. New generation, great
expectations: A field study of the millennial generation. Journal of Business and
Psychology 25, 2 (2010), 281–292.

[15] Helen Partridge and Gillian Hallam. 2006. Educating the millennial generation
for evidence based information practice. Library hi tech 24, 3 (2006), 400–419.

[16] Mary Poppendieck. 2007. Lean software development. In Companion to the
proceedings of the 29th International Conference on Software Engineering. IEEE
Computer Society, 165–166.

[17] Valentin Razmov and Richard Anderson. 2006. Pedagogical techniques supported
by the use of student devices in teaching software engineering. In ACM SIGCSE
Bulletin, Vol. 38. ACM, 344–348.

[18] Thomas P Schambach and Jim Dirks. 2002. Student Perceptions of Internship
Experiences. (2002).

[19] Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum.
Vol. 1. Prentice Hall Upper Saddle River.

[20] Mary Shaw. 2000. Software engineering education: a roadmap. In Proceedings of
the Conference on the Future of Software Engineering. ACM, 371–380.

[21] Mary Shaw, Jim Herbsleb, Ipek Ozkaya, and Dave Root. 2005. Deciding what
to design: Closing a gap in software engineering education. In International
Conference on Software Engineering. Springer, 28–58.

[22] Carolyn Snyder. 2003. Paper prototyping: The fast and easy way to design and
refine user interfaces. Morgan Kaufmann.

[23] John D Tvedt, Roseanne Tesoriero, and Kevin A Gary. 2001. The software factory:
combining undergraduate computer science and software engineering education.
In Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd International
Conference on. IEEE, 633–642.

[24] Laurie Williams, Robert R Kessler, Ward Cunningham, and Ron Jeffries. 2000.
Strengthening the case for pair programming. IEEE software 17, 4 (2000), 19–25.

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Software Projects
	3.2 Software Engineering Process and Learning Goals

	4 Results
	4.1 Software Engineering Skills
	4.2 Marketable Hard and Soft Skills
	4.3 Confidence
	4.4 Millennial Values
	4.5 Community Impact of the Software

	5 Future Work
	6 Conclusion
	Acknowledgments
	References

